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FOREWORD

Artificial	intelligence	(AI)	is	ubiquitous.	You	need	look	no	further	than	the
device	in	your	pocket	for	evidence—your	phone	now	offers	facial	recognition
security,	obeys	simple	voice	commands,	digitally	blurs	backgrounds	in	your
selfies,	and	quietly	learns	your	interests	to	give	you	a	personalized	experience.
AI	models	are	being	used	to	analyze	mountains	of	data	to	efficiently	create
vaccines,	improve	robotic	manipulation,	build	autonomous	vehicles,	harness	the
power	of	quantum	computing,	and	even	adjust	to	your	proficiency	in	online
chess.	Industry	is	adapting	to	ensure	state-of-the-art	AI	capabilities	can	be
integrated	into	its	domain	expertise,	and	academia	is	building	curriculum	that
exposes	concepts	of	artificial	intelligence	to	each	degree-based	discipline.	An
age	of	machine-driven	cognitive	autonomy	is	upon	us,	and	while	we	are	all
consumers	of	AI,	those	expressing	an	interest	in	its	development	need	to
understand	what	is	responsible	for	its	substantial	growth	over	the	past	decade.
Deep	learning,	a	subcategory	of	machine	learning,	leverages	very	deep	neural
networks	to	model	complicated	systems	that	have	historically	posed	problems
for	traditional,	analytical	methods.	A	newfound	practical	use	of	these	deep
neural	networks	is	directly	responsible	for	this	surge	in	development	of	AI,	a
concept	that	most	would	attribute	to	Alan	Turing	back	in	the	1950s.	But	if	deep
learning	is	the	engine	for	AI,	what	is	the	engine	for	deep	learning?

Deep	learning	draws	on	many	important	concepts	from	science,	technology,
engineering,	and	math	(STEM)	fields.	Industry	recruiters	continue	to	seek	a
formal	definition	of	its	constituents	as	they	try	to	attract	top	talent	with	more
descriptive	job	requisitions.	Similarly,	academic	program	coordinators	are	tasked
with	developing	the	curriculum	that	builds	this	skill	set	as	it	permeates	across
disciplines.	While	inherently	interdisciplinary	in	practice,	deep	learning	is	built
on	a	foundation	of	core	mathematical	principles	from	probability	and	statistics,
linear	algebra,	and	calculus.	The	degree	to	which	an	individual	must	embrace
and	understand	these	principles	depends	on	the	level	of	intimacy	one	expects	to
have	with	deep	learning	technologies.

For	the	implementer,	Math	for	Deep	Learning	acts	as	a	troubleshooting
guide	for	the	inevitable	challenges	encountered	in	deep	neural	network
implementation.	This	individual	is	typically	concerned	with	efficient
implementation	of	preexisting	solutions	with	tasks	including	identification	and
procurement	of	open	source	code,	setting	up	a	suitable	work	environment,



running	any	available	unit	tests,	and	finally,	retraining	with	relevant	data	for	the
application	of	interest.	These	deep	neural	networks	may	contain	tens	or	hundreds
of	millions	of	learnable	parameters,	and	assuming	adequate	user	proficiency,
successful	optimization	relies	on	sensitive	hyperparameter	selection	and	access
to	training	data	that	sufficiently	represents	the	population.	The	first	(and	second,
and	third)	attempt	at	implementation	often	requires	a	daunting	journey	into
neural	network	interrogation,	which	requires	dissection	into	and	higher-level
understanding	of	the	mathematical	drivers	presented	here.

At	some	point,	the	implementer	usually	becomes	the	integrator.	This	level	of
expertise	requires	some	familiarity	with	the	desired	application	domain	and	a
lower-level	understanding	of	the	building	blocks	that	enable	deep	learning.	In
addition	to	the	challenges	faced	in	basic	implementation,	the	integrator	needs	to
be	able	to	generalize	core	concepts	to	mold	a	mathematical	model	to	the	desired
domain.	Disaster	strikes	again!	Perhaps	the	individual	experiences	the
exploding-gradient	problem.	Maybe	the	integrator	desires	a	more	representative
loss	function	that	may	pose	differentiability	issues.	Or	maybe,	during	training,
the	individual	recognizes	that	the	selected	optimization	strategy	is	ineffective	for
the	problem.	Math	for	Deep	Learning	fills	a	void	within	the	community	by
offering	a	coherent	overview	of	the	critical	mathematical	concepts	that	compose
deep	learning	and	helps	overcome	these	obstacles.

The	integrator	becomes	the	innovator	when	comfort	with	the	subject	matter
allows	the	individual	to	be	truly	creative.	With	innovation	comes	the	need	for
information	dissemination,	often	requiring	time	away	from	practical
development	for	publication,	presentation,	and	a	fair	amount	of	teaching.	Math
for	Deep	Learning	serves	as	a	handbook	to	the	foundation	that	the	innovator
holds	in	high	esteem,	providing	quick	references	and	reminders	of	seeds	that
yield	new	developments	in	artificial	intelligence.

Just	as	these	roles	build	upon	each	other,	deep	learning	creates	its	own
hierarchy,	one	of	nonintuitive	concepts	or	features	that	solve	a	specific	task.	The
sheer	scope	of	the	problem	can	be	overwhelming	without	dedicated	focus.	Dr.
Kneusel	has	over	15	years	of	industry	experience	applying	machine	learning	and
deep	learning	to	image	generation	and	exploitation	problems,	and	he	created
Math	for	Deep	Learning	to	consolidate	and	emphasize	what	matters	most:	the
mathematical	foundation	from	which	all	neural	network	solutions	are	made
possible.	No	textbook	is	complete,	and	this	one	presents	other	resources	that
expound	on	the	topics	of	statistics,	linear	algebra,	and	calculus.	Math	for	Deep
Learning	is	for	the	individual	seeking	a	self-contained,	concentrated	overview	of
the	components	that	build	the	mathematical	engine	for	AI’s	primary	tool.



Derek	J.	Walvoord,	PhD
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INTRODUCTION

Math	is	essential	to	the	modern	world.	Deep	learning	is	also	rapidly	becoming
essential.	From	the	promise	of	self-driving	cars	to	medical	systems	detecting
fractures	better	than	all	but	the	very	best	physicians,	to	say	nothing	of
increasingly	capable,	and	possibly	worrisome,	voice-controlled	assistants,	deep
learning	is	everywhere.

This	book	covers	the	essential	math	for	making	deep	learning
comprehensible.	It’s	true	that	you	can	learn	the	toolkits,	set	up	the	configuration
files	or	Python	code,	format	some	data,	and	train	a	model,	all	without
understanding	what	you’re	doing,	let	alone	the	math	behind	it.	And,	because	of
the	power	of	deep	learning,	you’ll	often	be	successful.	However,	you	won’t
understand,	and	you	shouldn’t	be	satisfied.	To	understand,	you	need	some	math.
Not	a	lot	of	math,	but	some	specific	math.	In	particular,	you’ll	need	working
knowledge	of	topics	in	probability,	statistics,	linear	algebra,	and	differential
calculus.	Fortunately,	those	are	the	very	topics	this	book	happens	to	address.

Who	Is	This	Book	For?
This	is	not	an	introductory	deep	learning	book.	It	will	not	teach	you	the	basics	of
deep	learning.	Instead,	it’s	meant	as	an	adjunct	to	such	a	book.	(See	my	book
Practical	Deep	Learning:	A	Python-Based	Introduction	[No	Starch	Press,
2021].)	I	expect	you	to	be	familiar	with	deep	learning,	at	least	conceptually,
though	I’ll	explain	things	along	the	way.

Additionally,	I	expect	you	to	bring	certain	knowledge	to	the	table.	I	expect
you	to	know	high	school	mathematics,	in	particular	algebra.	I	also	expect	you	to



be	familiar	with	programming	using	Python,	R,	or	a	similar	language.	We’ll	be
using	Python	3.x	and	some	of	its	popular	toolkits,	such	as	NumPy,	SciPy,	and
scikit-learn.

I’ve	attempted	to	keep	other	expectations	to	a	minimum.	After	all,	the	point
of	the	book	is	to	give	you	what	you	need	to	be	successful	in	deep	learning.

About	This	Book
At	its	core,	this	is	a	math	book.	But	instead	of	proofs	and	practice	exercises,
we’ll	use	code	to	illustrate	the	concepts.	Deep	learning	is	an	applied	discipline
that	you	need	to	do	to	be	able	to	understand.	Therefore,	we’ll	use	code	to	bridge
the	gap	between	pure	mathematical	knowledge	and	practice.

The	chapters	build	one	upon	the	other,	with	foundational	chapters	followed
by	more	advanced	math	topics	and,	ultimately,	deep	learning	algorithms	that
make	use	of	everything	covered	in	the	earlier	chapters.	I	recommend	reading	the
book	straight	through	and,	if	you	wish,	skipping	topics	you’re	already	familiar
with	as	you	encounter	them.

Chapter	1:	Setting	the	Stage	This	chapter	configures	our	working
environment	and	the	toolkits	we’ll	use,	which	are	those	used	most	often	in
deep	learning.

Chapter	2:	Probability	Probability	affects	almost	all	aspects	of	deep
learning	and	is	essential	to	understanding	how	neural	networks	learn.	This
chapter,	the	first	of	two	on	this	subject,	introduces	fundamental	topics	in
probability.

Chapter	3:	More	Probability	Probability	is	so	important	that	one	chapter
isn’t	enough.	This	chapter	continues	our	exploration	and	includes	key	deep
learning	topics,	like	probability	distributions	and	Bayes’	theorem.

Chapter	4:	Statistics	Statistics	make	sense	of	data	and	are	crucial	for
evaluating	models.	Statistics	go	hand	in	hand	with	probability,	so	we	need	to
understand	statistics	to	understand	deep	learning.

Chapter	5:	Linear	Algebra	Linear	algebra	is	the	world	of	vectors	and
matrices.	Deep	learning	is,	at	its	core,	linear	algebra–focused.	Implementing
neural	networks	is	an	exercise	in	vector	and	matrix	mathematics,	so	it	is
essential	to	understand	what	these	concepts	represent	and	how	to	work	with
them.



Chapter	6:	More	Linear	Algebra	This	chapter	continues	our	exploration	of
linear	algebra,	focusing	on	important	topics	concerning	matrices.

Chapter	7:	Differential	Calculus	Perhaps	the	most	fundamental	concept
behind	the	training	of	neural	networks	is	the	gradient.	To	understand	the
gradient,	what	it	is	and	how	to	use	it,	we	must	know	how	to	work	with
derivatives	of	functions.	This	chapter	builds	the	foundation	necessary	to
understand	derivatives	and	gradients.

Chapter	8:	Matrix	Calculus	Deep	learning	manipulates	derivatives	of
vectors	and	matrices.	Therefore,	in	this	chapter	we	generalize	the	concept	of
a	derivative	to	these	objects.

Chapter	9:	Data	Flow	in	Neural	Networks	To	understand	how	neural
networks	manipulate	vectors	and	matrices,	we	need	to	understand	how	data
flows	through	the	network.	That’s	the	subject	of	this	chapter.

Chapter	10:	Backpropagation	Successful	training	of	neural	networks
usually	involves	two	algorithms	that	go	hand	in	hand:	backpropagation	and
gradient	descent.	In	this	chapter,	we	work	through	backpropagation	in	detail
to	see	how	the	math	we	learned	earlier	in	the	book	applies	to	the	training	of
actual	neural	networks.

Chapter	11:	Gradient	Descent	Gradient	descent	uses	the	gradients	that	the
backpropagation	algorithm	provides	to	train	a	neural	network.	This	chapter
explores	gradient	descent,	beginning	with	1D	examples	and	progressing
through	to	fully	connected	neural	networks.	It	also	describes	and	compares
common	variants	of	gradient	descent.

Appendix:	Going	Further	We	must,	of	necessity,	gloss	over	many	topics	in
probability,	statistics,	linear	algebra,	and	calculus.	This	appendix	points	you
toward	resources	that	will	aid	you	in	going	further	with	the	mathematics
behind	deep	learning.

You	can	download	all	the	code	from	the	book	here:
https://github.com/rkneusel9/MathForDeepLearning/.	And	please	look	at
https://nostarch.com/math-deep-learning/	for	future	errata.	Let’s	get	started.

https://github.com/rkneusel9/MathForDeepLearning/
https://nostarch.com/math-deep-learning/


1
SETTING	THE	STAGE

Although	this	book	has	no	traditional	math	exercises,	we	do	need	to	play	around
with	the	concepts	if	we	want	to	master	them.	We’ll	have	plenty	of	opportunities
for	that,	but	instead	of	pencil	and	paper	exercises,	we’ll	use	code.

This	chapter	will	help	you	set	the	stage	by	configuring	our	working
environment.	Throughout	the	book,	I’ll	work	in	Linux,	specifically	Ubuntu
20.04,	though	what	we’re	doing	most	likely	will	work	in	later	versions	of
Ubuntu	and	most	other	Linux	distributions	as	well.	For	completeness,	I’ve
included	sections	on	configuring	macOS	and	Windows	environments.	I	should
point	out	that	the	expected	operating	system	for	deep	learning	is	Linux,	with
most	things	working	under	macOS	as	well.	Windows	is	typically	an
afterthought,	and	many	deep	learning	toolkit	ports	are	poorly	maintained,	though
this	is	improving	with	time.

We’ll	begin	with	some	instructions	for	installing	the	expected	software
packages.	Then	we’ll	take	a	quick	look	at	the	NumPy	library	for	Python	3.x.
NumPy	is	foundational	to	virtually	all	scientific	uses	of	Python,	and	it’s	essential
that	you	know	how	to	work	with	it	at	a	basic	level.	Next,	I’ll	introduce	SciPy.
This	is	also	a	necessary	toolkit	for	science,	but	we’ll	only	need	the	tiniest	portion
of	it	here.	Finally,	I’ll	talk	a	bit	about	the	Scikit-Learn	toolkit,	abbreviated	here
as	sklearn.	This	valuable	toolkit	implements	many	of	the	traditional	machine
learning	models.

Throughout	the	book,	I’ll	often	use	running	examples	to	illustrate	concepts.
All	code	snippets	assume	the	following	line	has	been	executed:

import	numpy	as	np



Also,	in	some	places,	the	code	will	reference	output	from	a	snippet	that
appeared	earlier	in	the	chapter.	The	code	examples	are	brief,	so	following	one	to
the	next	shouldn’t	be	burdensome.	I	do	recommend	leaving	a	single	Python
session	running	as	you	work	through	a	chapter,	though	this	is	not	required.

Installing	the	Toolkits
The	end	goal	of	this	section	is	to	have	the	following	toolkits	installed	with	at
least	the	version	number	listed:

Python	3.8.5
NumPy	1.17.4
SciPy	1.4.1
Matplotlib	3.1.2
Scikit-Learn	(sklearn)	0.23.2

Later	versions	than	these	almost	certainly	will	work	as	well.
Let’s	take	a	quick	look	at	how	we	can	install	each	of	these	toolkits	in	the

major	operating	systems.

Linux
For	the	following,	the	$	prompt	represents	the	command	line,	whereas	>>>	is	the
Python	prompt.

A	fresh	install	of	Ubuntu	20.04	desktop	gives	us	Python	3.8.5	for	free.	Use
the	code

$	cat	/etc/os-release

to	verify	your	operating	system	version	and	use	python3	to	run	Python,	as	python
alone	starts	the	older	Python	2.7.

These	commands	install	NumPy,	SciPy,	Matplotlib,	and	sklearn:

$	sudo	apt-get	install	python3-pip
$	sudo	apt-get	install	python3-numpy
$	sudo	apt-get	install	python3-scipy
$	sudo	pip3	install	matplotlib
$	sudo	pip3	install	scikit-learn



Test	the	installation	by	starting	Python	3	and	importing	each	module:	numpy,
scipy,	and	sklearn.	Then	print	the	__version__	string	to	make	sure	it	meets	or	exceeds
the	versions	listed	above.	For	example,	see	the	following	code.

>>>	import	numpy;	numpy.__version__
'1.17.4'
>>>	import	scipy;	scipy.__version__
'1.4.1'
>>>	import	matplotlib;	matplotlib.__version__
'3.1.2'
>>>	import	sklearn;	sklearn.__version__
'0.23.2'

macOS
To	install	Python	3.x	for	Macintosh,	go	to	https://www.python.org/,	and	under
Downloads,	choose	Mac	OS	X.	Then	select	the	latest	stable	Python	3	release.
At	the	time	of	this	writing,	it’s	3.9.2.	When	the	download	is	complete,	run	the
installer	to	get	Python	3.9.2	set	up.

After	the	installation,	open	a	terminal	window	and	verify	the	installation	with
the	following:

$	python3	--version
Python	3.9.2

Assuming	Python	3	installed	correctly,	now	we	can	install	the	libraries	using
the	terminal	window	and	pip3,	which	the	installer	set	up	for	us:

$	pip3	install	numpy	--user
$	pip3	install	scipy	--user
$	pip3	install	matplotlib	--user
$	pip3	install	scikit-learn	--user

And,	finally,	we	can	check	the	versions	of	the	libraries	from	within	Python	3.
Enter	python3	in	the	terminal	to	pull	up	a	Python	console,	and	then	import
numpy,	scipy,	matplotlib,	and	sklearn	and	print	the	version	strings,	as	we	did	above,	to
verify	that	they	meet	or	exceed	the	minimum	versions.

Windows
To	install	Python	3	and	the	toolkits	for	Windows	10,	use	the	following	steps:

1.	 Go	to	https://www.python.org/	and	click	Downloads	and	Windows.

https://www.python.org/
https://www.python.org/


2.	 At	the	bottom	of	the	page,	select	the	x86-64	executable	installer.
3.	 Run	the	installer,	choosing	the	default	options.
4.	 Select	Install	for	All	Users	and	Add	Python	to	the	Windows	PATH.	This

is	important.

When	the	installer	finishes,	Python	will	be	available	from	the	command
prompt	because	we	told	the	installer	to	add	Python	to	the	PATH	environment
variable.	Therefore,	open	the	command	prompt	(WINDOWS-R,	cmd),	and	enter
python.	If	all	goes	well,	you’ll	be	greeted	by	the	Python	startup	message	and	see	a
>>>	interactive	prompt.	At	the	time	of	this	writing,	the	version	installed	was
3.8.2.	Note	that	to	exit	Python	in	Windows,	use	CTRL-Z,	not	CTRL-D.

The	Python	installer	did	us	the	courtesy	of	installing	pip	as	well.	We	can	use
it	directly	from	the	Windows	command	prompt	to	install	the	libraries	we	need.
At	the	prompt,	enter	the	following	lines	to	install	the	NumPy,	SciPy,	Matplotlib,
and	sklearn	libraries:

>	pip	install	numpy
>	pip	install	scipy
>	pip	install	matplotlib
>	pip	install	sklearn

For	me,	this	installed	NumPy	1.18.1,	SciPy	1.4.1,	Matplotlib	3.2.1,	and	sklearn
0.22.2,	which	meet	the	minimum	versions	above,	so	all	is	well.

To	test	things,	start	Python	from	the	command	prompt	and	import	numpy,
scipy,	matplotlib,	and	sklearn.	All	three	should	load	without	error.	To	write	Python
code,	install	any	editor	you’re	comfortable	with,	or	simply	use	Notepad.

With	your	toolkits	installed	and	good	to	go,	let’s	take	a	quick	look	at	each
library	to	become	at	least	a	bit	more	familiar	with	them.	We’ll	see	examples
throughout	the	book,	but	I	recommend	you	look	at	the	suggested	documentation.
It’s	worth	it.

NumPy
We	installed	NumPy	in	the	previous	section.	Now	I’ll	introduce	some	basic
NumPy	concepts	and	manipulations.	A	full	tutorial	is	available	online	at
https://docs.scipy.org/doc/numpy/user/quickstart.html.

Start	Python.	Then	try	the	following	at	the	prompt:

https://docs.scipy.org/doc/numpy/user/quickstart.html


>>>	import	numpy	as	np
>>>	np.__version__
'1.16.2'

The	first	line	loads	NumPy	and	sets	up	a	shortcut	name	for	it,	np.	Using	the
shortcut	name	isn’t	required,	but	doing	so	is	nearly	universal.	We’ll	assume	np
going	forward.	The	second	line	displays	the	version.	It	should	be	at	least	what	is
shown	above.

Defining	Arrays
NumPy	operates	on	arrays	and	is	quite	good	at	turning	lists	into	arrays.	Think
about	the	sort	of	arrays	one	finds	in	a	language	like	C	or	Java.	NumPy	provides
an	advantage	because	although	Python	is	elegant,	it’s	too	slow	for	scientific	uses
when	simulating	arrays	with	lists.	Actual	arrays	are	much	faster.	Here’s	an
example	defining	an	array	from	a	list,	and	then	examining	some	of	its	properties:

>>>	a	=	np.array([1,2,3,4])
>>>	a
				array([1,	2,	3,	4])
>>>	a.size
				4
>>>	a.shape
				(4,)
>>>	a.dtype
				dtype('int64')

This	example	defines	a	list	of	four	elements	and	then	passes	it	to	np.array	to
turn	it	into	a	NumPy	array.	Basic	array	properties	include	the	size	and	the	shape.
The	size	is	four	elements.	The	shape	is	also	four,	as	a	tuple,	showing	that	a	is	a
vector,	a	one-dimensional	(1D)	array.	The	shape	is	four	because	array	a	has	four
elements.	If	a	was	two-dimensional	(2D),	the	shape	would	have	two	values,	one
for	each	axis	of	the	array.	See	the	following	example,	where	the	shape	of	b	tells
us	that	b	has	two	rows	and	four	columns:

>>>	b	=	np.array([[1,2,3,4],[5,6,7,8]])
>>>	print(b)
[[1	2	3	4]
	[5	6	7	8]]
>>>	b.shape
(2,	4)

Data	Types



Python	numeric	data	types	come	in	two	flavors:	integers	of	arbitrary	size	(try
2**1000)	or	floating-point	numbers.	NumPy,	however,	allows	for	arrays	of	many
different	types.	Under	the	hood,	NumPy	is	implemented	in	C,	so	it	supports	the
same	set	of	data	types	C	supports.	The	previous	example	shows	that	the	np.array
function	took	the	given	list	and,	since	every	element	of	the	list	was	an	integer,
created	an	array	where	each	element	was	a	signed	64-bit	integer.	Table	1-1	has
the	data	types	NumPy	works	with;	we	can	let	NumPy	choose	the	data	type	for
us,	or	we	can	specify	it	explictly.

Table	1-1:	NumPy	Data	Type	Names,	C	Equivalents,	and	Range

NumPy	
name

Equivalent	C	type Range

float64 double ±[2.225	×	10–308,	1.798	×	10308]
float32 float ±[1.175	×	10–38,	3.403	×	1038]
int64 long	long [–263,	263–1]
uint64 unsigned	long	long [0,	264–1]
int32 long [–231,	231–1]
uint32 unsigned	long [0,	232–1]
uint8 unsigned	char [0,	255	=	22–1]

Let’s	look	at	some	examples	of	arrays	with	specific	data	types:

>>>	a	=	np.array([1,2,3,4],	dtype="uint8")
>>>	a.dtype
dtype('uint8')
>>>	a	=	np.array([1,2,3,4],	dtype="int16")
>>>	a	=	np.array([1,2,3,4],	dtype="uint32")
>>>	b	=	np.array([1,2,3,4.0])
>>>	b.dtype
dtype('float64')
>>>	b	=	np.array([1,2,3,4.0],	dtype="float32")
>>>	c	=	np.array([111,222,333,444],	dtype="uint8")
>>>	c
array([111,	222,		77,	188],	dtype=uint8)

The	examples	with	array	a	use	integer	types,	and	the	examples	with	array	b
use	floating-point	types.	Notice	that	the	first	b	example	defaulted	to	a	64-bit
float.	NumPy	did	this	because	one	of	the	input	list	elements	was	a	float	(4.0).

The	last	example	defining	array	c	seems	to	be	a	bug.	But	it	isn’t.	NumPy
doesn’t	warn	us	if	the	requested	data	type	can’t	hold	the	given	values.	Here,	we



have	an	8-bit	integer	that	can	only	hold	values	in	the	range	[0,	255].	The	first
two,	111	and	222,	fit,	but	the	last	two,	333	and	444,	are	too	large.	NumPy	quietly
kept	only	the	lowest	8	bits	of	these	values,	which	correspond	to	77	and	188,
respectively.	The	lesson	is	that	NumPy	expects	you	to	know	what	you’re	doing
in	regard	to	data	types.	Usually,	this	isn’t	an	issue,	but	it	is	something	to	keep	in
mind.

2D	Arrays
If	a	list	turns	into	a	1D	vector,	we	might	suspect	that	a	list	of	lists	would	turn
into	a	2D	array.	We’d	be	right:

>>>	d	=	np.array([[1,2,3],[4,5,6],[7,8,9]])
>>>	d.shape
				(3,	3)
>>>	d.size
				9
>>>	d
				array([[1,	2,	3],
											[4,	5,	6],
											[7,	8,	9]])

We	see	that	a	list	of	three	sublists	is	mapped	to	a	3	×	3	array	(a	matrix).
Subscripts	on	NumPy	arrays	count	from	zero,	so	referencing	d[1,2]	above	returns
6.

Zeros	and	Ones
Two	particularly	useful	NumPy	functions	are	np.zeros	and	np.ones.	Both	define
arrays	given	a	shape.	The	first	initializes	the	array	elements	to	zero,	while	the
second	initializes	them	to	one.	This	is	the	primary	way	to	create	NumPy	arrays
from	scratch:

>>>	a	=	np.zeros((3,4),	dtype="uint32")
>>>	a[0,3]	=	42
>>>	a[1,1]	=	66
>>>	a
array([[	0,		0,		0,	42],
							[	0,	66,		0,		0],
							[	0,		0,		0,		0]],	dtype=uint32)
>>>	b	=	11*np.ones((3,1))
>>>	b
array([[11.],
							[11.],
							[11.]])



The	first	argument	is	a	tuple	giving	the	size	of	each	dimension.	If	we	pass	in
a	scalar,	the	resulting	array	is	a	1D	vector.	Let’s	look	at	the	definition	of	b.	Here,
we	multiply	the	3	×	1	array	by	a	scalar	(11).	This	causes	each	element	of	the
array,	which	was	initialized	to	1.0,	to	be	multiplied	by	11.

Advanced	Indexing
We	saw	simple	array	indexing	in	the	examples	above,	where	we	indexed	with	a
single	value.	NumPy	supports	more	sophisticated	array	indexing.	One	type	we’ll
use	often	is	a	single	index	that	returns	a	complete	subarray.	Here’s	an	example:

>>>	a	=	np.arange(12).reshape((3,4))
>>>	a
array([[	0,		1,		2,		3],
							[	4,		5,		6,		7],
							[	8,		9,	10,	11]])
>>>	a[1]
array([4,	5,	6,	7])
>>>	a[1]	=	[44,55,66,77]
>>>	a
array([[	0,		1,		2,		3],
							[44,	55,	66,	77],
							[	8,		9,	10,	11]])

This	example	introduces	np.arange,	which	is	the	NumPy	equivalent	of	Python’s
range	function.	Notice	the	use	of	the	reshape	method	to	change	the	12-element
vector	into	a	3	×	4	matrix.	Also,	notice	that	a[1]	returns	the	entire	subarray,
starting	with	the	first	index	of	the	first	dimension.	This	syntax	is	short	for	a[1,:]
where	:	means	all	elements	of	the	given	dimension.	This	shorthand	also	works
for	assignments,	as	the	next	line	shows.

The	same	syntax	for	indexing	slices	from	a	Python	list	works	with	NumPy.
Here’s	what	that	looks	like	if	we	continue	with	the	example	above:

>>>	a[:2]
array([[	0,		1,		2,		3],
							[44,	55,	66,	77]])
>>>	a[:2,:]
array([[	0,		1,		2,		3],
							[44,	55,	66,	77]])
>>>	a[:2,:3]
array([[	0,		1,		2],
							[44,	55,	66]])
>>>	b	=	np.arange(12)
>>>	b



array([	0,		1,		2,		3,		4,		5,		6,		7,		8,		9,	10,	11])
>>>	b[::2]
array([	0,		2,		4,		6,		8,	10])
>>>	b[::3]
array([0,	3,	6,	9])
>>>	b[::-1]
array([11,	10,		9,		8,		7,		6,		5,		4,		3,		2,		1,		0])

We	see	that	a[:2]	returns	the	first	two	rows	with	an	implied	:	for	the	second
dimension,	as	the	following	line	shows.	With	our	third	command,	we	get	a
subarray	in	two	dimensions	by	taking	the	first	two	rows	and	first	three	columns
with	a[:2,:3].	The	examples	with	b	show	how	to	extract	every	other	or	every	third
element.	The	last	example	is	particularly	handy:	it	uses	a	negative	increment	to
reverse	the	dimension.	The	increment	is	–1	to	reverse	all	values.	If	it	was	–2,
we’d	get	every	other	element	of	b	in	reverse	order.

NumPy	uses	:	to	indicate	all	the	elements	along	a	specific	dimension.	It	also
allows	...	(ellipsis)	as	a	shorthand	for	“as	many	:s	as	needed.”	For	example,	let’s
define	a	three-dimensional	(3D)	array:

>>>	a	=	np.arange(24).reshape((4,3,2))
>>>	a
array([[[	0,		1],
								[	2,		3],
								[	4,		5]],
							[[	6,		7],
								[	8,		9],
								[10,	11]],
							[[12,	13],
								[14,	15],
								[16,	17]],
							[[18,	19],
								[20,	21],
								[22,	23]]])

You	can	think	of	array	a	as	a	collection	of	four	3	×	2	matrices.	To	update	the
second	of	these	matrices,	you	could	use	the	following:

>>>	a[1,:,:]	=	[[11,22],[33,44],[55,66]]
>>>	a
array([[[	0,		1],
								[	2,		3],
								[	4,		5]],
							[[11,	22],
								[33,	44],
								[55,	66]],



							[[12,	13],
								[14,	15],
								[16,	17]],
							[[18,	19],
								[20,	21],
								[22,	23]]])

Here,	we	specified	the	dimensions	explicitly	with	:	and	showed	that	NumPy
isn’t	picky:	it	knows	that	a	list	of	lists	matched	the	expected	shape	of	the
subarray	and	updated	array	a	accordingly.	We	get	the	same	effect	by	using	the
ellipsis	as	seen	next.

>>>	a[2,...]	=	[[99,99],[99,99],[99,99]]
>>>	a
array([[[	0,		1],
								[	2,		3],
								[	4,		5]],
							[[11,	22],
								[33,	44],
								[55,	66]],
							[[99,	99],
								[99,	99],
								[99,	99]],
							[[18,	19],
								[20,	21],
								[22,	23]]])

We’ve	now	updated	the	third	3	×	2	subarray.

Reading	and	Writing	to	Disk
NumPy	arrays	can	be	written	to	and	loaded	from	disk	by	using	np.save	and	np.load,
like	so:

>>>	a	=	np.random.randint(0,5,(3,4))
>>>	a
array([[4,	2,	1,	3],
							[4,	0,	2,	4],
							[0,	4,	3,	1]])
>>>	np.save("random.npy",a)
>>>	b	=	np.load("random.npy")
>>>	b
array([[4,	2,	1,	3],
							[4,	0,	2,	4],
							[0,	4,	3,	1]])



Here,	we’re	using	np.random.randint	to	create	a	random	3	×	4	integer	array	with
values	in	the	range	0	through	5.	NumPy	has	extensive	libraries	for	random
numbers.	We	write	array	a	to	disk	as	random.npy.	The	.npy	extension	is	necessary
and	will	be	added	if	we	don’t	supply	it.	We	then	load	the	array	back	from	disk
using	np.load.

We’ll	encounter	other	NumPy	functions	throughout	the	book.	I’ll	explain
them	when	they’re	first	introduced.	Let’s	move	on	now	to	a	quick	look	at	the
SciPy	library.

SciPy
SciPy	adds	a	plethora	of	functionality	to	Python.	It	uses	NumPy	under	the	hood,
so	the	two	are	often	installed	together.	A	full	tutorial	is	available	here:
https://docs.scipy.org/doc/scipy/reference/tutorial/index.html.

In	this	book,	we’ll	focus	on	the	functions	in	the	scipy.stats	module.	Start
Python	and	try	the	following:

>>>	import	scipy
>>>	scipy.__version__
'1.2.1'

This	loads	the	SciPy	module	and	verifies	that	the	version	number	is	at	least
what	it	should	be.	Any	later	version	of	SciPy	should	work	just	fine.

As	a	quick	test,	let’s	try	the	following:

>>>	from	scipy.stats	import	ttest_ind
>>>	a	=	np.random.normal(0,1,1000)
>>>	b	=	np.random.normal(0,0.5,1000)
>>>	c	=	np.random.normal(0.1,1,1000)
>>>	ttest_ind(a,b)
Ttest_indResult(statistic=-0.027161815649563964,	pvalue=0.9783333836992686)
>>>	ttest_ind(a,c)
Ttest_indResult(statistic=-2.295584443456226,	pvalue=0.021802794508002675)

First,	we	load	NumPy	and	then	the	ttest_ind	function	from	SciPy’s	stats	module.
This	function	takes	two	sets	of	data,	say	test	scores	from	two	classes,	and	asks
the	question:	do	these	sets	of	data	have	the	same	average	value?	Or,	more
accurately,	it	asks:	how	strongly	can	we	believe	that	the	same	process	generated
these	two	sets	of	data?	The	t-test	is	a	classic	method	for	answering	this	question.
One	way	to	evaluate	its	result	is	to	look	at	the	p-value.	You	can	think	of	a	p-

https://docs.scipy.org/doc/scipy/reference/tutorial/index.html


value	as	the	probability	that	the	two	sets	would	have	the	measured	difference	in
average	value	if	they	came	from	the	same	generating	process.	A	probability	near
1	means	we	have	a	lot	of	confidence	that	the	two	sets	are	from	the	same	process.

The	variables	a,	b,	and	c	are	1D	arrays	where	the	values	from	the	array	(here
1,000)	are	extracted	from	Gaussian	curves,	also	called	normal	curves.	We’ll	get
to	these	later,	but	for	now,	know	that	the	numbers	are	pulled	from	a	bell	curve
where	values	near	the	middle	are	more	likely	to	be	selected	than	those	near	the
edges.	The	first	two	arguments	to	normal	are	the	average	value	and	the	standard
deviation,	a	measure	of	how	spread	out	the	bell	curve	is:	the	larger	the	standard
deviation,	the	flatter,	and	wider,	the	curve.

For	this	example,	we’d	expect	a	and	b	to	be	very	similar,	as	they	both	have	an
average	value	of	0.0,	though	slightly	different	bell	curve	shapes.	However,	c	has
an	average	value	of	0.1.	We	hope	the	t-test	picks	up	on	this	and	tells	us	that	we
might	want	to	be	careful	in	believing	a	and	c	were	generated	by	the	same	process.

The	output	of	the	ttest_ind	function	lists	the	p-value	(pvalue).	And,	as	we
expected,	comparing	a	and	b	returns	a	p-value	of	0.98,	meaning	that	the
probability	we’d	see	the	difference	between	the	averages	of	these	two	sets	of
data,	given	they	came	from	the	same	generating	process,	is	about	98	percent.
However,	when	we	compare	a	and	c,	we	get	a	p-value	of	2.7	percent	(0.027).
This	means	there	is	about	a	3	percent	chance	we’d	see	the	difference	between	a
and	c	if	they	were	generated	by	the	same	process.	Therefore,	we	conclude	that	a
and	c	are	from	different	processes.	We	state,	then,	that	the	difference	between
these	two	datasets	is	statistically	significant.

Historically,	p-values	less	than	0.05	have	been	considered	statistically
significant.	However,	this	threshold	is	arbitrary,	and	recent	experience	in
replicating	experiments,	especially	in	the	soft	sciences,	has	led	to	a	call	for	a
stricter	threshold.	Using	a	p-value	of	0.05	means	you’ll	be	wrong	about	1	time	in
20	(1/20	=	0.05),	which	is	too	generous	a	threshold.	That	said,	a	p-value	close	to
0.05	suggests	that	something	is	going	on,	and	more	investigation	(and	a	larger
dataset)	is	warranted.

Matplotlib
We’ll	use	Matplotlib	to	generate	graphs.	Let’s	verify	its	2D	and	3D	plotting
abilities	here.	First,	a	simple	2D	example:

>>>	import	numpy	as	np
>>>	import	matplotlib.pylab	as	plt



>>>	x	=	np.random.random(100)
>>>	plt.plot(x)
>>>	plt.show()

This	example	loads	NumPy,	with	which	Matplotlib	works	best,	and
generates	a	vector,	x,	of	100	random	values,	[0,	1),	the	output	of	np.random.random.
We	then	use	plt.plot	to	plot	the	vector	and	plt.show	to	display	it.	Matplotlib	output	is
interactive.	Play	around	with	the	plot	to	get	familiar	with	how	to	use	the	plot
window.	For	example,	Figure	1-1	shows	what	the	plot	window	looks	like	on
Linux.	Since	the	plot	is	random,	you’ll	see	a	different	sequence	of	values,	but	the
controls	on	the	window	will	be	the	same.



Figure	1-1:	A	sample	Matplotlib	plotting	window

For	3D,	give	this	a	try:

>>>	from	mpl_toolkits.mplot3d	import	Axes3D
>>>	import	matplotlib.pylab	as	plt
>>>	import	numpy	as	np
>>>	x	=	np.random.random(20)



>>>	y	=	np.random.random(20)
>>>	z	=	np.random.random(20)
>>>	fig	=	plt.figure()
>>>	ax	=	fig.add_subplot(111,	projection='3d')
>>>	ax.scatter(x,y,z)
>>>	plt.show()

We	first	load	the	3D	axes	toolkit,	Matplotlib,	and	NumPy.	Then,	using
NumPy,	we	generate	three	random	vectors,	[0,	1).	These	are	our	3D	points.
Using	plt.figure	and	fig.add_subplot,	we	set	up	a	3D	projection.	The	111	is	shorthand
telling	Matplotlib	that	we	want	a	grid	of	1	×	1	and	that	the	current	plot	should	go
in	index	1	of	that	grid.	So,	111	means	a	single	plot.	The	projection	keyword	gets	the
plot	ready	for	3D.	Finally,	the	scatter	plot	is	made,	ax.scatter,	and	shown,	plt.show.
As	with	the	2D	plot,	the	3D	plot	is	interactive.	Grab	and	hold	with	the	mouse	to
rotate	the	plot.

Scikit-Learn
The	goal	of	this	book	is	to	cover	the	math	of	deep	learning,	not	the
implementation	of	deep	learning.	However,	from	time	to	time,	it’ll	be	helpful	to
look	at	a	simple	neural	network	model	or	two.	In	those	cases,	we’ll	make	use	of
sklearn,	in	particular,	the	MLPClassifier	class.	Also,	sklearn	contains	some	useful	tools
for	evaluating	the	performance	of	a	model	and	for	visualization	of	high-
dimensional	data.

As	a	quick	example,	let’s	build	a	simple	neural	network	to	classify	small
8×8-pixel	grayscale	images	of	handwritten	digits.	This	dataset	is	built	into	sklearn.
Here’s	the	code	for	the	example:

			import	numpy	as	np
			from	sklearn.datasets	import	load_digits
			from	sklearn.neural_network	import	MLPClassifier

❶	d	=	load_digits()
			digits	=	d["data"]
			labels	=	d["target"]

			N	=	200
❷	idx	=	np.argsort(np.random.random(len(labels)))
			x_test,	y_test	=	digits[idx[:N]],	labels[idx[:N]]
			x_train,	y_train	=	digits[idx[N:]],	labels[idx[N:]]

❸	clf	=	MLPClassifier(hidden_layer_sizes=(128,))
			clf.fit(x_train,	y_train)



			score	=	clf.score(x_test,	y_test)
			pred	=	clf.predict(x_test)
			err	=	np.where(y_test	!=	pred)[0]
			print("score						:	",	score)
			print("errors:")
			print("		actual			:	",	y_test[err])
			print("		predicted:	",	pred[err])

We	first	import	NumPy.	From	sklearn	itself,	we	import	the	load_digits	function
to	return	the	small	digit	image	dataset	and	the	MLPClassifier	class	to	train	a
traditional	neural	network,	that	is,	a	multilayer	perceptron.	We	then	get	the	digit
data	and	pull	out	the	images	and	their	associated	labels,	0	.	.	.	9	❶.	The	digit
images	are	stored	as	8	×	8	=	64-element	vectors	representing	the	image
unraveled	so	the	rows	are	laid	end	to	end.	The	digits	data-set	includes	1,797
images,	so	digits	is	a	2D	NumPy	array	with	1,797	rows,	with	64	columns	per	row,
and	labels	is	a	vector	of	1,797	digit	labels.

We	randomize	the	order	of	the	images,	being	careful	to	keep	the	right	label
with	the	right	digit	❷	and	extract	train	and	test	data	(x_train,	x_test)	and	labels
(y_train,	y_test).	We’ll	set	the	first	200	digit	images	aside	to	use	as	test	data	and
train	the	model	with	the	remaining	1,597	images.	This	leaves	us	with
approximately	160	images	of	each	digit	to	train	with	and	about	20	of	each	digit
for	testing.

Next,	we	build	the	model	by	creating	an	instance	of	MLPClassifier	❸.	We’ll
take	all	the	defaults	and	specify	only	the	size	of	the	single	hidden	layer,	which
has	128	nodes.	The	input	vectors	are	64	elements,	so	we	double	that	for	the
hidden	layer.	There’s	no	need	to	specify	the	output	layer	size	explicitly;	sklearn
deduces	it	from	the	labels	in	y_train.	Training	the	model	is	a	simple	call	to	clf.fit
passing	the	training	image	vectors	(x_train)	and	labels	(y_train).

Training	for	a	small	dataset	like	this	will	take	only	a	few	seconds.	When	it’s
done,	the	learned	weights	and	biases	are	in	the	model	(clf).	We	first	get	the	score,
the	overall	accuracy	(score),	and	then	the	actual	model	class	label	predictions	on
the	test	set	(pred).	Any	errors	are	captured	in	err	by	looking	for	places	where	the
actual	label	(y_test)	does	not	match	the	prediction.	We	end	by	showing	the	actual
class	label	and	predicted	label	for	the	errors.

Each	time	we	run	this	code,	we’ll	get	a	different	ordering	of	the	digit	data,
which	leads	to	a	different	train	and	test	set.	Additionally,	neural	networks	are
randomly	initialized	prior	to	training.	So,	we’ll	get	a	different	result	each	time.
The	first	time	I	ran	this	code,	I	had	an	overall	score	of	0.97	(97	percent)
accuracy.	Guessing	would	give	an	accuracy	of	about	10	percent,	so	we	can	say
that	the	model	has	learned	rather	well.



that	the	model	has	learned	rather	well.

Summary
In	this	chapter,	we	learned	how	to	configure	our	working	environment.	I	then
introduced	our	suite	of	Python	toolkits	at	a	high	level	and	supplied	pointers	on
where	to	learn	more.	With	the	work	environment	secure	and	flourishing,	the	next
chapter	dives	headfirst	into	probability	theory.



2
PROBABILITY

Probability	affects	every	aspect	of	our	lives,	but	in	reality,	we’re	all	pretty	bad	at
it,	as	some	of	the	examples	in	this	chapter	demonstrate.	We	need	to	study
probability	to	get	it	right.	And	we	need	to	get	it	right	because	deep	learning	deals
extensively	with	ideas	from	probability	theory.	Probability	appears	everywhere,
from	the	outputs	of	neural	networks	to	how	often	different	classes	appear	in	the
wild	to	the	distributions	used	to	initialize	deep	networks.

This	chapter	aims	to	expose	you	to	the	sorts	of	probability-related	ideas	and
terms	you’ll	frequently	encounter	in	deep	learning.	We’ll	start	with	basic	ideas
about	probability	and	introduce	the	notion	of	a	random	variable.	We’ll	then	jump
to	the	rules	of	probability.	These	sections	cover	the	basics	that	will	put	us	in	a
position	to	talk	about	joint	and	marginal	probabilities.	You’ll	encounter	those
terms	over	and	over	again	as	you	explore	deep	learning.	Once	you	understand
how	to	use	joint	and	marginal	probabilities,	I’ll	explain	the	first	of	the	two	chain
rules	discussed	in	this	book.	The	second	is	in	Chapter	6	on	differential	calculus.
We’ll	continue	our	study	of	probability	in	Chapter	3.

Basic	Concepts
A	probability	is	a	number	between	zero	and	one	that	measures	how	likely
something	is	to	happen.	If	there’s	no	chance	the	something	will	happen,	its
probability	is	zero.	If	it’s	absolutely	certain	that	it	will	happen,	its	probability	is
one.	We’ll	usually	express	probabilities	this	way,	though	in	everyday	use,	people
seem	to	dislike	saying	things	like,	“The	chance	of	rain	tomorrow	is	0.25.”



Instead,	we	say,	“The	chance	of	rain	tomorrow	is	25	percent.”	In	everyday
speech,	we	convert	the	fractional	probability	to	a	percentage.	We’ll	do	the	same
in	this	chapter.

The	previous	paragraph	used	multiple	words	associated	with	probability:
likely,	chance,	and	certainty.	This	is	fine	in	casual	use,	and	even	somewhat	in
deep	learning,	but	when	we	need	to	be	explicit,	we’ll	stick	with	probability	and
express	it	numerically	in	the	range	zero	to	one,	[0,	1].	The	square	brackets	mean
the	upper	and	lower	limit	are	included.	If	the	limit	isn’t	included	in	the	range,	a
normal	parenthesis	is	used.	For	example,	the	NumPy	function	np.random.random()
returns	a	pseudorandom	floating-point	number	in	the	range	[0,	1).	So,	it	might
return	exactly	zero,	but	it	will	never	return	exactly	one.

Next,	I’ll	introduce	the	foundational	concepts	of	sample	space,	events,	and
random	variables.	I’ll	close	with	some	examples	of	how	humans	are	bad	at
probability.

Sample	Space	and	Events
Put	succinctly,	a	sample	space	is	a	discrete	set	or	continuous	range	that
represents	all	the	possible	outcomes	of	an	event.	An	event	is	something	that
happens.	Usually,	it’s	the	outcome	of	some	physical	process,	like	the	flipping	of
a	coin	or	the	roll	of	a	die.	All	the	possible	events	we’ve	grouped	together	are	the
sample	space	we’re	working	with.	Each	event	is	a	sample	from	the	sample
space,	and	the	sample	space	represents	all	the	possible	events.	Let’s	look	at	a
few	examples.

The	possible	outcomes	of	a	coin	flip	are	heads	(H)	or	tails	(T);	thus,	the
sample	space	for	a	coin	flip	is	the	set	{H,	T}.	The	sample	space	for	the	roll	of	a
standard	die	is	the	set	{1,	2,	3,	4,	5,	6}	because,	discounting	the	die	perching
itself	on	its	edge,	one	of	the	six	faces	of	the	cube	will	be	on	top	when	the	die
stops	moving.	These	are	examples	of	discrete	sample	spaces.	In	deep	learning,
most	sample	spaces	are	continuous	and	they	consist	of	floating-point	numbers,
not	integers	or	elements	of	a	set.	For	example,	if	a	feature	input	to	a	neural
network	can	take	on	any	value	in	the	range	[0,	1],	then	[0,	1]	is	the	sample	space
for	that	feature.

We	can	ask	about	the	likelihood	of	certain	events	happening.	For	a	coin,	we
can	ask,	what’s	the	likelihood	the	coin	will	land	heads	up	when	flipped?
Intuitively,	assuming	the	coin	isn’t	weighted	so	that	one	side	is	more	likely	to
show	up	than	the	other,	we	say	the	likelihood	of	heads	is	50	percent.	The
probability	of	getting	heads	is	then	0.5	(50	percent	as	a	percentage).	We	see	that



the	probability	of	getting	tails	is	also	0.5.	Finally,	since	heads	and	tails	are	the
only	possible	outcomes,	we	see	that	the	sum	of	the	probabilities	over	all	possible
results	is	0.5	+	0.5	=	1.0.	Probabilities	always	sum	to	1.0	over	all	possible	values
of	the	sample	space.

What’s	the	probability	of	rolling	a	four	with	a	six-sided	die?	Again,	there	is
no	reason	to	favor	one	face	over	another,	and	only	one	of	the	six	faces	has	four
dots,	so	the	probability	is	one	out	of	six,	1/6	≈	0.166666	.	.	.	or	about	17	percent.

Random	Variables
Let’s	denote	the	outcome	of	a	coin	flip	by	a	variable,	X.	X	is	what’s	called	a
random	variable,	a	variable	that	takes	on	values	from	its	sample	space	with	a
certain	probability.	Because	here	the	sample	space	is	discrete,	X	is	a	discrete
random	variable,	which	we	denote	with	an	uppercase	letter.	For	the	coin,	the
probability	of	X	being	heads	equals	the	probability	of	X	being	tails,	both	0.5.	To
write	this	formally,	we	use

P(X	=	heads)	=	P(X	=	tails)	=	0.5

where	P	is	universally	used	to	indicate	the	probability	of	the	event	in	parentheses
for	the	specified	random	variable.	A	continuous	random	variable	is	a	random
variable	from	a	continuous	sample	space,	denoted	with	a	lowercase	letter,	like	x.
We	usually	talk	about	the	probability	of	the	random	variable	being	in	some
range	of	the	sample	space,	not	a	particular	real	number.	For	example,	if	we	use
the	NumPy	random	function	to	return	a	value	in	[0,	1),	we	can	ask:	What’s	the
probability	that	it	will	return	a	value	in	the	range	[0,	0.25)?	Since	any	number	is
as	likely	to	be	returned	as	any	other,	we	say	that	the	probability	of	being	in	that
range	is	0.25	or	25	percent.

Humans	Are	Bad	at	Probability
We’ll	dive	into	the	math	of	probability	in	the	next	section.	But	before	then,	let’s
look	at	two	examples	involving	probability	that	show	how	bad	humans	can	be	at
it.	Both	of	these	examples	have	stumped	experts,	not	because	the	experts	are
somehow	lacking,	but	because	our	intuitions	about	probability	are	often	entirely
incorrect,	and	even	experts	are	thoroughly	human.

The	Monty	Hall	Dilemma
This	problem	is	a	particular	favorite	of	mine,	as	it	confuses	even	mathematicians



with	advanced	degrees.	The	dilemma	is	taken	from	an	old	American	game	show
called	Let’s	Make	a	Deal.	The	original	host	of	the	show,	Monty	Hall,	would
select	a	member	of	the	audience	and	show	that	person	three	large	closed	doors
labeled	1,	2,	and	3.	Behind	one	of	the	doors	was	a	new	car.	Behind	the	remaining
two	doors	were	joke	prizes,	such	as	a	live	goat.

The	contestant	was	asked	to	pick	a	door.	Then,	Hall	would	ask	that	one	of
the	doors	the	contestant	didn’t	pick	be	opened,	naturally	one	that	didn’t	have	a
car	behind	it.	After	the	audience	stopped	laughing	at	whatever	joke	prize	was
behind	that	door,	Hall	would	ask	the	contestant	if	they	wanted	to	keep	the
originally	selected	door,	or	if	they	would	rather	change	their	selection	to	the
remaining	door.	The	dilemma	is	simply	that:	do	they	keep	their	original	guess,	or
do	they	switch	to	the	remaining	door?

If	you	want	to	think	about	it	for	a	while,	please	do.	Put	the	book	down,	walk
around,	get	out	a	pencil	and	some	paper,	make	notes,	then,	when	you	have	a
solution	(or	give	up),	read	on.	.	.	.

Here’s	the	right	answer:	change	doors.	If	you	do,	you’ll	win	the	car	2/3	of
the	time.	If	you	don’t,	you’ll	only	win	the	car	1/3	of	the	time,	as	that’s	the
probability	of	selecting	the	correct	door	initially:	one	correct	choice	out	of	three.

When	Marilyn	vos	Savant	presented	this	problem	in	her	Parade	magazine
column	in	1990	and	stated	that	the	correct	solution	is	to	change	doors,	she	was
flooded	with	letters,	many	from	mathematicians,	some	angry,	insisting	she	was
wrong.	She	wasn’t.	One	way	to	see	that	she	was	right	is	to	use	a	computer
program	to	simulate	the	game.	We	won’t	develop	the	code	for	one	here,	but	it
isn’t	too	hard.	If	you	write	one	and	run	it,	you’ll	see	the	probability	of	winning
when	changing	doors	converges	on	2/3	as	the	number	of	simulated	games
increases.	However,	we	can	also	use	common	sense	and	basic	ideas	about
probability	to	see	the	solution.

First,	if	we	don’t	change	doors,	we	know	we	have	a	1/3	probability	of
winning	the	car.	Now,	consider	what	can	happen	when	we	change	doors.	If	we
change	doors,	the	only	way	we	can	lose	is	if	we	happened	to	select	the	correct
door	in	the	first	place.	Why?	Suppose	we	initially	chose	one	of	the	joke	prize
doors	instead.	Hall,	who	knows	full	well	which	door	the	car	is	behind,	will	never
open	the	door	with	the	car.	Since	we	selected	one	of	the	joke	doors	already,	he’s
forced	to	choose	the	remaining	joke	door	and	open	it	for	us,	thereby	ensuring	the
car	is	behind	the	only	remaining	door.	If	we	switch	doors,	we	win.	Since	there
are	two	doors	without	the	car,	our	chance	of	selecting	the	wrong	door	initially	is
2/3.	However,	we	just	saw	that	if	we	choose	the	wrong	door	initially	and	switch
when	given	the	opportunity,	we’ll	win	the	car.	Therefore,	we	have	a	2/3	chance



of	winning	the	car	by	changing	our	guess.	The	1/3	probability	of	losing	by
changing	our	initial	guess	is,	of	course,	the	case	where	we	initially	selected	the
correct	door.

Cancer	or	Not?
This	example	is	found	in	several	popular	books	about	probability	and	statistics
(for	instance,	More	Damned	Lies	and	Statistics,	by	Joel	Best	[UC	Press,	2004],
and	The	Drunkard’s	Walk,	by	Leonard	Mlodinow	[Pantheon,	2008]).	It’s	based
on	an	actual	study.	The	task	is	to	determine	the	probability	that	a	woman	in	her
40s	has	breast	cancer	if	she	has	a	positive	mammogram.	Note	that	the	numbers
that	follow	might	have	been	accurate	when	the	study	was	conducted,	but	they
may	not	be	valid	now.	Please	consider	them	only	as	an	example.

We	are	told	the	following:

1.	 The	probability	that	a	randomly	selected	woman	in	her	40s	has	breast
cancer	is	0.8	percent	(8	out	of	1,000).

2.	 The	probability	that	a	woman	with	breast	cancer	will	have	a	positive
mammogram	is	90	percent.

3.	 The	probability	that	a	woman	without	breast	cancer	will	have	a	positive
mammogram	is	7	percent.

A	woman	comes	to	the	clinic	and	is	screened.	The	mammogram	is	positive.
What’s	the	probability,	based	on	what	we’ve	been	told,	that	she	actually	has
breast	cancer?

From	#1	above,	we	know	that	if	we	select	1,000	women	in	their	40s	at
random,	8	of	them	will	have	breast	cancer	(on	average).	Therefore,	of	those	8,	90
percent	of	them	(#2	above)	will	have	a	positive	mammogram.	This	means	7
women	with	cancer	will	have	a	positive	mammogram	because	8	×	0.9	=	7.2.
This	leaves	992	of	the	original	1,000	who	don’t	have	breast	cancer.	From	#3
above,	992	×	0.07	=	69.4,	so	69	women	without	breast	cancer	will	also	have	a
positive	mammogram,	giving	a	total	of	7	+	69	=	76	positive	mammograms,	of
which	7	are	actual	cancer	and	69	are	false-positive	results.	Therefore,	the
probability	that	a	positive	mammogram	indicates	cancer	is	7	out	of	76	or	7/76	=
0.092—about	9	percent.

The	median	estimate	that	doctors	presented	with	this	problem	gave	was	a
probability	of	cancer	of	around	70	percent,	with	over	one-third	giving	an
estimate	of	90	percent.	Probabilities	are	hard	for	humans,	even	for	those	with	a
lot	of	training.	The	doctors’	mistake	wasn’t	properly	accounting	for	the



probability	of	a	randomly	selected	woman	in	her	40s	having	breast	cancer.	We’ll
see	in	Chapter	3	how	to	calculate	this	result	using	Bayes’	theorem,	which	does
take	this	probability	into	account.

For	now,	let’s	switch	from	intuition	to	mathematical	formality.

The	Rules	of	Probability
Let’s	get	started	with	the	basic	rules	of	probability.	These	are	foundational	rules
that	we’ll	need	for	the	remainder	of	the	chapter	and	beyond.	We’ll	learn	about
the	probability	of	events,	the	sum	rule	for	probabilities,	and	what	we	mean	by	a
conditional	probability.	After	that,	the	product	rule	will	let	us	tackle	the	birthday
paradox.	In	the	birthday	paradox,	we’ll	see	how	to	calculate	the	minimum
number	of	people	to	have	together	in	a	room	such	that	the	probability	of	at	least
two	of	them	sharing	a	birthday	exceeds	50	percent.	The	answer	is	fewer	than	you
might	think.

Probability	of	an	Event
We	mentioned	earlier	that	the	sum	of	all	the	probabilities	for	a	sample	space	is
one.	This	means	that	the	chance	of	any	event	from	the	sample	space	is	always
less	than	or	equal	to	one,	since	the	event	came	from	the	sample	space,	and	the
sample	space	encompasses	all	possible	events.	This	implies,	for	any	event	A,

and,	for	all	events	Ai	in	the	sample	space,

where	∑	(sigma)	means	to	sum	over	the	expression	on	the	right	for	each	of	the
i’s.	Think	of	a	for	loop	in	Python	with	the	expression	on	the	right	as	the	body	of
the	loop.

If	we	roll	a	six-sided	die,	we	intuitively	(and	correctly)	understand	that	the
probability	of	getting	any	value	is	the	same:	one	out	of	six	possibilities,	or	1/6.
Therefore,	Equation	2.1	tells	us	that	P(1),	the	probability	of	rolling	a	one,	is
between	zero	and	one.	This	is	true	since	 .	Furthermore,	Equation
2.2	tells	us	that	the	sum	of	the	probabilities	of	all	events	in	the	sample	space
must	be	one.	This	is	also	true	for	the	six-sided	die,	since	



	and	
.

If	the	probability	of	an	event	happening	is	P(A),	then	the	probability	that
event	A	does	not	happen	is

with	 	read	as	“not	A.”	 	is	known	as	the	complement	of	A.	You’ll
sometimes	see	 	written	as	P(¬A)	using	¬,	the	logical	symbol	for	“not.”

Equation	2.3	comes	from	Equation	2.1	and	Equation	2.2	because	the
probability	of	an	event	is	less	than	one	and	the	probability	of	any	event	from	the
sample	space	happening	is	one,	so	the	probability	of	events	that	aren’t	A
happening	must	be	one	minus	the	probability	of	event	A	happening.

For	example,	when	rolling	a	die,	the	probability	of	getting	a	value	in	[1,	6]	is
one,	but	the	probability	of	getting	a	four	is	1/6.	So,	the	chance	of	not	rolling	a
four	is	all	the	probability	that	remains	when	the	chance	of	rolling	a	four	is
removed,

meaning	we	have	an	83	percent	chance	of	not	rolling	a	four.
What	if	we	roll	two	dice	and	sum	them?	The	sample	space	is	the	set	of

integers	from	2	through	12.	However,	each	sum	is	not	equally	likely	in	this	case,
a	situation	that’s	at	the	core	of	the	casino	game	craps,	for	example.	We	calculate
the	probabilities	of	each	sum	by	enumerating	all	the	ways	they	can	happen.	By
counting	the	ways	events	can	happen	and	dividing	by	the	total	number	of	events,
we	can	determine	the	probability.	Table	2-1	shows	all	the	possible	ways	to
generate	each	sum.

Table	2-1:	The	Number	of	Combinations	of	Two	Dice	Leading	to	Different	Sums

Su
m

Combinations Count Probability

2 1	+	1 1 0.0278
3 1	+	2,	2	+	1 2 0.0556
4 1	+	3,	2	+	2,	3	+	1 3 0.0833
5 1	+	4,	2	+	3,	3	+	2,

4	+	1
4 0.1111

6 1	+	5,	2	+	4,	3	+	3, 5 0.1389



6 1	+	5,	2	+	4,	3	+	3,
4	+	2,	5	+	1

5 0.1389

7 1	+	6,	2	+	5,	3	+	4,
4	+	3,	5	+	2,	6	+	1

6 0.1667

8 2	+	6,	3	+	5,	4	+	4,
5	+	3,	6	+	2

5 0.1389

9 3	+	6,	4	+	5,	5	+	4,
6	+	3

4 0.1111

10 4	+	6,	5	+	5,	6	+	4 3 0.0833
11 5	+	6,	6	+	5 2 0.0556
12 6	+	6 1 0.0278

36 1.0000

In	Table	2-1,	there	are	36	possible	combinations	of	the	two	dice.	We	see	that
the	most	likely	sum	is	7,	since	six	combinations	add	to	7.	The	least	likely	are	2
and	12;	there’s	only	one	way	to	get	either.	If	there	are	six	ways	to	get	a	sum	of	7,
then	the	probability	of	a	7	is	“6	out	of	36,”	or	6/36	≈	0.1667.	We’ll	return	to
Table	2-1	later	in	the	next	chapter	when	we	discuss	probability	distributions	and
Bayes’	theorem.	Table	2-1	illustrates	a	general	rule:	if	we	can	enumerate	the
sample	space,	then	we	can	calculate	the	probabilities	of	specific	events.

As	a	final	example,	if	you	flip	three	coins	simultaneously,	what	is	the
probability	of	getting	no	heads,	one	head,	two	heads,	or	three	heads?	We	can
enumerate	the	possible	outcomes	and	see.	We	get	the	following:

He
ads

Combinations Count Probability

0 TTT 1 0.125
1 HTT,	THT,	TTH 3 0.375
2 HHT,	HTH,	THH 3 0.375
3 HHH 1 0.125

8 1.000

From	this	table,	we	claim	that	the	probability	of	getting	one	or	two	heads	in
three	coin	flips	is	the	same:	37.5	percent.	Let’s	test	this	with	a	bit	of	code:

import	numpy	as	np
N	=	1000000
M	=	3
heads	=	np.zeros(M+1)
for	i	in	range(N):



				flips	=	np.random.randint(0,2,M)
				h,	_	=	np.bincount(flips,	minlength=2)
				heads[h]	+=	1
prob	=	heads	/	N
print("Probabilities:	%s"	%	np.array2string(prob))

The	code	runs	1,000,000	tests	(N)	simulating	the	flip	of	three	coins	(M).	The
number	of	times	each	test	ends	up	with	0,	1,	2,	or	3	heads	is	stored	in	heads.	Each
test	selects	three	values	in	[0,	1]	(flips)	and	counts	how	many	heads	(a	zero)	show
up.	We	use	np.bincount	for	this	and	throw	away	the	number	of	tails.	The	number	of
heads	is	then	tallied,	and	the	next	set	of	flips	happens.

When	all	N	simulations	are	complete,	we	convert	the	number	of	heads	to
probabilities	by	dividing	by	the	number	of	simulations	run	(prob).	Finally,	we
print	the	corresponding	probabilities.	For	zero,	one,	two,	or	three	heads,	a	single
run	returned	the	following:

Probabilities:	[0.125236,	0.3751,	0.37505,	0.124614]

These	are	quite	close	to	the	probabilities	we	calculated	above,	so	we	have
confidence	that	we’re	correct.

Sum	Rule
We’ll	start	with	a	definition:	two	events	A	and	B	are	said	to	be	mutually
exclusive	if	they	can’t	both	happen;	either	one	or	the	other	happens.	For
example,	a	coin	flip	is	either	heads	or	tails;	it	can’t	be	heads	and	tails.	Mutually
exclusive	events	mean	if	event	A	happens,	event	B	is	excluded,	and	vice	versa.
Additionally,	if	the	probabilities	of	two	events	happening	are	completely
unrelated,	meaning	the	probability	of	A	is	unaffected	by	whether	B	has
happened,	we	say	the	two	events	are	independent.

The	sum	rule	is	concerned	with	the	probability	of	more	than	one	mutually
exclusive	event	happening.	It	tells	us	the	probability	of	either	event	happening.
For	example,	what’s	the	probability	of	rolling	a	four	or	a	five	with	a	standard
die?	We	know	the	probability	of	rolling	a	four	is	1/6,	as	is	the	probability	of
rolling	a	five.	Since	the	events	are	mutually	exclusive,	we	can	intuit	that	the
probability	of	getting	a	four	or	a	five	is	their	sum,	since	four	and	five	as
outcomes	are	both	parts	of	the	sample	space,	and	either	one	or	the	other	happens
or	neither	happens.	So,	we	get	the	following:



Here	∪	means	“or”	or	“union.”	You’ll	see	∪	often.	For	a	standard	die,	the
probability	of	rolling	a	four	or	a	five	is	 ,	or	about	33	percent.

The	sample	space	of	two	coin	flips	is	{HH,	HT,	TH,	TT};	therefore,	this	is
the	probability	of	getting	two	heads	or	two	tails:

There’s	more	to	the	sum	rule,	but	before	we	can	see	it,	we	need	to	consider
the	product	rule.

Product	Rule
The	sum	rule	tells	us	about	the	probability	of	events	A	or	B	happening.	The
product	rule	tells	us	the	probability	of	events	A	and	B:

Here	∩	means	“and”	or	“intersection.”
If	events	A	and	B	are	mutually	exclusive,	we	will	immediately	see	that	P(A	∩

B)	=	0	because	if	event	A	happens	with	probability	P(A),	then	event	B’s
probability	is	P(B)	=	0,	and	their	product	is	also	zero.	The	same	is	true	if	event	B
happens;	then	P(A)	=	0.

Not	all	events	are	mutually	exclusive,	of	course.	For	example,	assume	80
percent	of	the	people	in	the	world	have	brown	eyes	and	50	percent	are	female.
What’s	the	probability	of	a	randomly	selected	person	being	a	female	with	brown
eyes?	Let’s	use	the	product	rule,

P(female,	brown-eyed)	=	P(female)P(brown-eyed)	=	0.5(0.8)	=	0.4

to	see	there	is	a	40	percent	chance	of	a	randomly	selected	person	being	a	brown-
eyed	female.

The	product	rule	makes	sense	if	we	think	about	it	a	bit.	Calculating	the
fraction	of	people,	which	is	the	probability,	who	are	female	won’t	change	the
fraction	of	those	females	who	are	brown-eyed.	One	event,	being	female,	has	no
impact	on	the	other	event,	being	brown-eyed.

The	product	rule	isn’t	limited	to	only	two	events.	Consider	the	following.
According	to	insurance	companies,	the	probability	of	being	struck	by	lightning
in	any	given	year,	if	you	live	in	the	US,	is	about	1/1,222,000,	or	0.000082
percent.	What’s	the	probability	of	being	a	brown-eyed	female	and	being	struck
by	lightning	in	any	given	year,	assuming	you	live	in	the	US?	Again,	we	can	use



by	lightning	in	any	given	year,	assuming	you	live	in	the	US?	Again,	we	can	use
the	product	rule:

The	population	of	the	United	States	is	about	331,000,000,	of	which	0.000033
percent	are	brown-eyed	females	who’ll	be	struck	by	lightning	this	year:	109
people,	by	our	calculation	above.	According	to	the	US	National	Weather
Service,	about	270	people	will	be	struck	by	lightning	in	a	given	year.	As	we	saw
above,	40	percent	of	those	people	will	be	brown-eyed	females,	which	yields
270(0.4)	=	108.	So,	our	calculation	is	entirely	believable.

Sum	Rule	Revisited
We	stated	above	that	there’s	more	to	the	sum	rule.	Let’s	see	now	what	we	were
missing	above.	Equation	2.4	gives	us	the	sum	rule	for	mutually	exclusive	events
A	and	B.	What	if	the	events	aren’t	mutually	exclusive?	In	that	case,	the	sum	rule
needs	to	be	modified:

Let’s	look	at	an	example.
An	archaeologist	has	discovered	a	small	cache	of	20	ancient	coins.	He	notes

that	12	of	the	coins	are	Roman	and	8	are	Greek.	He	also	notes	that	6	of	the
Roman	coins	and	3	of	the	Greek	coins	are	silver.	The	remaining	coins	are
bronze.	What’s	the	probability	of	selecting	a	silver	or	Roman	coin	from	the
cache?

If	we	believe	that	silver	and	Roman	are	mutually	exclusive,	we’d	be	tempted
to	say	the	following:

However,	the	sum	of	the	two	probabilities	is	 ,	and	we	can’t	have	a
probability	greater	than	one.	Something	is	amiss.



The	problem	is	that	there	are	Roman	coins	in	the	cache	that	are	made	of
silver.	We	counted	them	twice—once	in	P	(silver)	and	again	in	P(Roman)—so
now	we	need	to	subtract	them	from	the	overall	sum.	There	are	six	silver	Roman
coins.	So,	the	probability	of	being	a	silver	Roman	coin	is	P(silver	and	Roman)

.	Subtracting	that	part,	we	see	that	the	probability	of	picking	a	silver	coin	or
a	Roman	coin	is	75	percent:

As	with	the	sum	rule,	there’s	more	to	the	product	rule,	and	we’ll	get	to	that
shortly.	But	first,	let’s	use	the	product	rule	to	see	if	we	can	solve	the	birthday
paradox.

The	Birthday	Paradox
On	average,	how	many	people	do	we	need	together	in	a	room	to	have	a	higher
than	50	percent	chance	that	two	of	them	share	the	same	birthday?	This	problem
is	known	as	the	birthday	paradox.	Let’s	see	if	we	can	use	our	knowledge	of	the
product	rule	for	probability	to	see	what	the	solution	is.

We’ll	ignore	leap	years	and	state	that	there	are	365	days	in	a	year.
Intuitively,	we	see	that	the	probability	of	randomly	selected	people	sharing	a
birthday	is	one	day	(the	shared	birthday)	out	of	365	possible	birthdays	in	a	year.
The	sample	space	is	365	days,	and	the	shared	birthday	is	the	one	day	in
common.	So,	we	get	the	following:

They	either	share	a	birthday	or	they	don’t:	1	–	1/365	=	365/365	–	1/365	=
364/365.	So	we	get	the	following:

Of	the	365	days	in	a	year,	there	is	one	possible	match,	leaving	364	days	that
don’t	match.



don’t	match.
A	0.3	percent	chance	of	randomly	selected	people	sharing	a	birthday	is	pretty

low.	It	means	if	you	randomly	choose	pairs	of	people	and	ask	if	they	share	a
birthday,	on	average	you’ll	get	three	matches	in	a	thousand—not	terribly	likely.

For	our	calculation,	we’ll	look	at	things	the	other	way.	We’re	looking	for	the
number	of	people	we	need	together	so	that	the	probability	of	no	two	people
sharing	a	birthday	is	below	50	percent.

We	know	the	probability	that	two	randomly	selected	people	don’t	share	a
birthday:	 .	Therefore,	if	we	select	two	pairs	of	people	at	random,	the
probability	that	both	pairs	do	not	share	a	birthday	is	the	following:

Here,	we’re	using	the	product	rule.	Similarly,	with	three	people,	(A,	B,	C),	we
can	form	three	different	pairs,	(A,	B),	(A,	C),	and	(B,	C),	so	we	calculate	the
following:

For	n	comparisons,	here’s	the	probability	that	none	share	a	birthday:

Our	task	is	to	find	the	minimum	number	of	comparisons,	n,	leading	to	a
probability	of	no	shared	birthday	<	50	percent,	where	n	is	a	function	of	the
number	of	people	in	the	room,	m.	Why	less	than	50	percent?	Because	if	we	find
an	n	leading	to	a	less	than	50	percent	probability	that	there	is	no	shared	birthday,
the	probability	that	there	is	a	shared	birthday	must	then	be	>	50	percent.

If	you	pick	three	people	at	random,	there	are	three	pairs	of	people	to	check	to
see	if	they	share	a	birthday.	If	you	have	four	people,	there	are	six	pairs.	So,	the
larger	the	group	of	people,	the	more	pairs	there	are.	Can	we	find	a	rule	that	maps
the	number	of	people,	m,	to	the	number	of	pairs	to	compare,	n?	If	we	have	that,
we	can	find	the	smallest	m	leading	to	an	n	where	the	probability	of	Equation	2.7
is	<	50	percent.



When	we	have	a	set	of	m	unique	objects,	like	people	in	a	room,	and	we	select
pairs	of	them,	how	many	different	pairs	can	we	select?	In	other	words,	how
many	combinations	of	m	things	are	there	when	taken	two	at	a	time?	The	formula
to	calculate	the	number	of	combinations	of	m	things	taken	k	at	a	time	is	this:

You’ll	sometimes	hear	this	referred	to	as	“m	choose	k,”	where,	for	us,	k	=	2.
Let’s	find	the	number	of	comparisons	we	need,	n,	and	use	the	number	of
combinations	of	things	taken	two	at	a	time	to	find	an	m	leading	to	at	least	n
comparisons.

A	straightforward	loop	in	Python	locates	the	n	we	need:

for	n	in	range(300):
				if	((364/365)**n	<	0.5):
								print(n)
								break

We’re	told	n	=	253.	So,	we	need	to	make,	on	average,	253	comparisons,	253
pairs	of	people,	to	have	a	greater	than	50	percent	chance	that	one	of	those	pairs
shares	a	birthday.	The	final	step	is	to	find	how	many	combinations	of	m	people
taken	two	at	a	time	are	at	least	253.	A	bit	of	brute	force	trial	and	error	tells	us
this:

We	need	m	=	23	people	on	average	to	have	a	higher	than	50	percent	chance	at
least	two	of	them	share	a	birthday.	All	thanks	to	the	product	rule.

Is	our	result	reliable	or	just	sleight	of	hand?	Some	code	can	tell	us.	First,	let’s
verify	via	simulation	that	the	probability	of	randomly	picking	two	people	who
share	a	birthday	is	0.3	percent:



match	=	0
for	i	in	range(100000):
				a	=	np.random.randint(0,364)
				b	=	np.random.randint(0,364)
				if	(a	==	b):
								match	+=	1
print("Probability	of	a	random	match	=	%0.6f"	%	(match/100000,))

The	code	simulates	100,000	random	pairs	of	people,	where	the	random
integer	in	[0,	364]	represents	the	person’s	birthday.	If	the	two	random	birthdays
match,	match	is	incremented.	After	all	simulations	run,	we	print	the	probability.	A
run	of	this	code	produced	the	following,	making	our	assertion	of	a	0.3	percent
chance	believable:

Probability	of	a	random	match	=	0.003100

What	about	the	number	of	people	to	get	a	>	50	percent	chance	of	sharing	a
birthday?	Here,	we	have	two	loops.	The	first	is	over	the	number	of	people	in	the
room	(m),	and	the	second	is	over	the	number	of	simulations	for	that	many	people
in	the	room	(n).	In	code,	that	looks	like	this:

for	m	in	range(2,31):
				matches	=	0
				for	n	in	range(100000):
								match	=	0
								b	=	np.random.randint(0,364,m)
								for	i	in	range(m):
												for	j	in	range(m):
																if	(i	!=	j)	and	(b[i]	==	b[j]):
																				match	+=	1
								if	(match	!=	0):
												matches	+=	1
				print("%2d	%0.6f"	%	(m,	matches/100000))

We	let	m	range	over	2	to	30	people.	For	each	set	of	m	people,	we	run	100,000
simulations.	For	each	simulation,	we	pick	a	set	of	birthdays	for	each	person	in
the	room	(b)	and	then	compare	each	person	with	every	other	person	to	see	if
there’s	a	matching	birthday.	If	there	is,	we	increment	match.	If	we	had	at	least	one
match,	we	increment	matches	and	move	to	the	next	simulation.	Finally,	when	all	of
the	simulations	for	the	current	number	of	people	in	the	room	are	complete,	we
print	the	probability	of	at	least	a	single	match.

If	we	run	the	code	and	plot	the	output,	we	get	Figure	2-1,	where	the	dashed
line	is	50	percent.	The	first	point	above	the	dashed	line	is	23	people,	precisely	as



we	calculated.

Figure	2-1:	The	probability	of	a	shared	birthday	as	a	function	of	the	number	of	people	in	a	room

It’s	always	satisfying	to	see	the	simulation	line	up	with	the	math.

Conditional	Probability
Consider	a	bag	of	10	marbles:	8	red	and	2	blue.	We	know	if	we	pick	a	marble	at
random	from	the	bag,	we	have	a	2	out	of	10,	or	20	percent,	chance	of	picking	a
blue	marble.	Say	we	pick	a	blue	marble.	After	admiring	its	pretty	shade	of	blue,
we	put	it	back	in	the	bag,	shake	the	bag,	and	pull	out	another	marble.	What’s	our
chance	of	picking	a	blue	marble	a	second	time?	Again,	there	are	2	blue	marbles
and	10	total,	so	it’s	still	20	percent.

If	the	fact	that	event	A	happened	(here,	picking	a	blue	marble	that	we	then
returned	to	the	bag)	hasn’t	affected	the	probability	of	a	future	event	B,	the	two
are	independent	events.	Our	chance	of	picking	a	blue	marble	a	second	time	is	in



no	way	affected	by	the	fact	that	we	previously	chose	a	blue	marble.	The	same	is
true	for	a	coin	flip.	The	fact	that	we’ve	landed	heads	up	four	times	in	a	row	has
nothing	to	do	with	the	probability	of	getting	tails	on	the	next	flip,	assuming	it’s	a
fair	coin,	i.e.,	it’s	not	weighted	on	one	side	or	two-headed	(or	two-tailed).

Now,	consider	an	alternate	scenario.	We	still	have	a	bag	with	eight	red	and
two	blue	marbles.	We	pick	a	marble—say	it’s	red	this	time—and	because	we
like	the	color,	we	keep	the	marble	and	put	it	aside.	Now,	we	pick	another	marble
from	the	bag.	What’s	the	probability	of	picking	another	red	marble?	Here,	things
have	changed.	There	are	nine	marbles	now,	and	seven	of	them	are	red.	So,	our
chance	of	picking	a	second	red	marble	is	now	7	of	9,	or	78	percent.	The
possibility	of	choosing	a	red	marble	initially	was	8	of	10,	or	80	percent.	The	fact
that	event	A	happened,	picking	a	red	marble	we	then	kept,	has	altered	the
probability	of	a	second	event.	The	two	events	are	no	longer	independent.	The
probability	of	the	second	event	was	changed	by	the	first	event	happening.
Notationally,	we	write	P(B|A)	to	mean	the	probability	of	event	B	given	event	A
has	happened.	This	is	a	conditional	probability	because	it’s	conditional	on	event
A	happening.

Here’s	where	we	update	the	product	rule.	The	version	in	Equation	2.5
assumes	that	the	two	events	are	independent,	like	being	female	and	having
brown	eyes.	If	we	have	a	dependent	situation,	the	rule	becomes

meaning	the	probability	of	the	two	events	both	happening	is	the	product	of	the
probability	of	one	given	the	other	has	happened	and	the	probability	of	the	other.

Looking	back	at	our	marble	example	above,	we	calculated	the	probability	of
picking	a	red	marble	after	already	picking	and	keeping	a	red	marble	to	be	7	of	9,
or	about	78	percent.	That’s	P(B|A).	For	P(A),	we	need	the	probability	of	picking
a	red	marble	initially,	which	we	said	was	80	percent.	Therefore,	the	probability
of	picking	a	red	marble	that	we	keep,	A,	and	picking	a	red	marble	on	a	second
draw,	B,	is	62	percent:

If	two	events	are	mutually	exclusive,	P(B|A)	=	P(A|B)	=	0.	If	events	A	and	B



are	independent,	then	P(A|B)	=	P(A)	and	P(B|A)	=	P(B)	because	the	conditional
event	happening	or	not	has	no	influence	on	the	later	event.

Finally,	note	that	typically	P(B|A)	≠	P(A|B),	and	confusing	the	two
conditional	probabilities	is	a	common	and	often	serious	error.	As	we’ll	see	in
Chapter	3,	something	called	Bayes’	theorem	gives	the	proper	relationship
between	the	conditional	probabilities.	We’ll	encounter	conditional	probability
again	when	discussing	the	chain	rule	for	probability.

Total	Probability
If	our	sample	space	is	separated	into	disjoint	regions,	Bi	(B1,	B2,	etc.)	so	that	the
totality	of	the	sample	space	is	covered	by	the	collection	of	Bis	and	the	Bis	don’t
overlap,	we	can	calculate	the	probability	of	an	event	over	all	the	partitions	as	the
following:

Here	P(A|Bi)	is	the	probability	of	A	given	partition	Bi	and	P(Bi)	is	the	probability
of	partition	Bi,	which	is	the	amount	of	the	sample	space	that	Bi	represents.	In	this
view,	P(A)	is	the	total	probability	of	A	over	the	partitions,	Bi.	Let’s	see	an
example	of	how	to	use	this	law.

You	have	three	cities,	Kish,	Kesh,	and	Kuara,	and	their	populations	are
2,000,	1,000,	and	3,000,	respectively.	Additionally,	the	percentages	of	people
with	blue	eyes	in	these	cities	are	12	percent,	3	percent,	and	21	percent,
respectively.	We	want	to	know	the	probability	that	a	randomly	selected	person
from	among	the	cities	has	blue	eyes.	The	cities’	populations	affect	things,	as	the
probability	of	having	blue	eyes	varies	by	city	and	the	cities	vary	in	population.
To	find	P(blue),	we	use	the	total	probability:

Here	P(blue|Kish)	is	the	probability	of	having	blue	eyes	given	you	live	in	Kish,
and	P	(Kish)	is	the	probability	of	living	in	Kish,	and	so	on.

We	know	the	necessary	quantities	to	find	the	total	probability.	The
probability	of	blue	eyes	per	city	is	given	above,	and	the	probability	of	living	in



probability	of	blue	eyes	per	city	is	given	above,	and	the	probability	of	living	in
each	city	is	found	from	its	population	and	the	total	population	of	the	three	cities:

Therefore,	P(blue)	is

meaning	there	is	a	15	percent	chance	a	randomly	selected	inhabitant	of	the	three
cities	will	have	blue	eyes.	Note	the	sum	of	the	probabilities	for	selecting	the
cities:	P(Kish)	+	P(Kesh)	+	P(Kuara)	=	1.	This	must	be	the	case	for	the
partitioning	of	the	total	sample	space,	all	the	inhabitants	of	the	cities,	to	be
covered	by	the	partitioning	into	cities.

Joint	and	Marginal	Probability
The	joint	probability	of	two	variables,	P(X	=	x,	Y	=	y),	is	the	probability	that
random	variable	X	will	have	the	value	x	at	the	same	time	random	variable	Y	is	y.
We’ve	already	seen	an	example	of	a	joint	probability.	When	we	use	“and”	when
calculating	a	probability,	we’re	calculating	a	joint	probability.	A	joint	probability
is	the	probability	of	multiple	conditions	being	true	at	the	same	time,	which	is
“and.”	The	marginal	probability	is	what	we	get	when	we	calculate	the
probability	of	one	or	more	of	those	conditions	without	caring	about	the	value	of
the	others;	in	other	words,	the	probability	of	a	subset	of	the	random	variables	in
the	“and.”

In	this	section,	we’ll	examine	joint	and	marginal	probabilities	using	simple
tables.	We’ll	then	introduce	the	chain	rule	for	probability.	This	rule	lets	us	break
down	a	joint	probability	into	the	product	of	smaller	joint	probabilities	and
conditional	probabilities.

Joint	Probability	Tables



According	to	Colour	Blind	Awareness	(http://www.colourblindawareness.org/),
approximately	1	in	12	men	and	1	in	200	women	are	color-blind.	The	difference
comes	from	the	fact	that	the	affected	gene	is	on	the	X	chromosome,	requiring	a
woman	to	inherit	the	recessive	gene	from	both	her	mother	and	father.	A	man
need	only	inherit	the	gene	from	one	parent.

Pretend	we	survey	1,000	people.	We	can	count	the	number	of	people	who
are	male	and	color-blind,	female	and	color-blind,	male	and	not	color-blind,	and
female	and	not	color-blind.	We	do	this	and	arrange	the	data	in	a	table	like	so:

Color-blind Not	color-blind
Male 42 456 498
Female 3 499 502

45 955 1000

Tables	like	these	are	known	as	contingency	tables.	The	tallied	data	is	in	the
center	2	×	2	numerical	portion	of	the	table.	The	rightmost	column	is	the	sum
across	the	rows,	and	the	final	row	is	the	sum	of	the	columns.	The	sum	of	the
final	row	or	column	is	in	the	last	cell	and,	by	necessity,	sums	to	the	1,000	people
we	surveyed.

We	can	turn	the	contingency	table	into	a	table	of	probabilities	by	dividing
each	cell	by	1,000,	the	number	of	people	surveyed.	Doing	this	gives	us	the
following:

Color-blind Not	color-blind
Male 0.042 0.456 0.498
Female 0.003 0.499 0.502

0.045 0.955 1.000

The	table	is	now	a	joint	probability	table.	With	it,	we	can	look	up	the
probability	of	being	male	and	color-blind.	Notationally,	we	write

P(sex	=	male,	color-blind	=	yes)	=	0.042

and,	similarly,	we	see	that

P(sex	=	female,	color-blind	=	no)	=	0.499

Using	the	joint	probability	table,	we	can	predict	what	we	would	expect	to
measure	given	a	random	sample	of	people.	For	example,	if	we	have	a	sample	of
20,000	people,	then,	based	on	our	table,	we’ll	expect	to	find	about	20000(0.042)

http://www.colourblindawareness.org/


20,000	people,	then,	based	on	our	table,	we’ll	expect	to	find	about	20000(0.042)
=	840	color-blind	men	and	about	20000(0.003)	=	60	color-blind	women.

What	if	we	wanted	to	know	the	probability	of	being	color-blind	regardless	of
sex?	For	that,	we	sum	the	probabilities	along	the	color-blind	column	and	see	that
there	is	a	4.5	percent	chance	that	a	randomly	selected	person	is	color-blind.
Likewise,	summing	along	the	row	gives	us	an	estimated	probability	of	being
female	as	50.2	percent.	We	do	need	to	bear	in	mind	that	our	table	was	built	from
a	sample	of	only	1,000	people.	You	might	guess	that	if	we	had	instead	sampled
100,000	people,	our	split	between	male	and	female	would	be	closer	to	50/50,	and
you’d	be	right.

Calculating	the	probability	of	being	color-blind	or	female	from	the	joint
probability	table	is	calculating	a	marginal	probability.	In	the	first	case,	we
summed	along	the	column	to	remove	the	effect	of	sex,	whereas	in	the	second
case,	we	summed	along	the	row	to	remove	the	effect	of	color-blindness.

Mathematically,	we	get	the	marginal	probabilities	by	summing	across	the
variables	we	don’t	want.	If	we	have	a	joint	probability	table	for	two	variables,
like	the	example	above,	we	get	the	marginal	probabilities	by	summing:

Using	the	table	above,	we	can	write

where	we	sum	across	sex	to	remove	its	effect.	Now,	let’s	explore	another	table,
one	with	three	variables.

Sometime	during	the	night	of	April	14,	1912,	the	RMS	Titanic	sank	in	the
North	Atlantic	on	its	maiden	voyage	from	England	to	New	York	City.	Based	on
a	sample	of	887	people	who	were	on	board	the	Titanic,	we	can	generate	Table	2-
2	showing	the	joint	probability	for	three	variables:	survival,	sex,	and	cabin	class.

Table	2-2:	Joint	Probability	Table	for	Titanic	Passengers

Cabin1 Cabin2 Cabin3
Dead Male 0.087 0.103 0.334



Dead Male 0.087 0.103 0.334
Female 0.003 0.007 0.081

Alive Male 0.051 0.019 0.053
Female 0.103 0.079 0.081

Let’s	use	Table	2-2	to	calculate	some	probabilities.	Note,	we’ll	use	the
values	in	Table	2-2,	which	are	accurate	to	three	decimals.	As	a	result,	the	overall
numbers	will	be	slightly	off	from	the	probabilities	we’d	calculate	from	the
counts,	but	doing	this	makes	the	link	between	the	table	and	the	equations	more
concrete.

First,	we	can	read	directly	from	the	table	for	specific	triplets	of	survived,	sex,
and	cabin	class.	Here’s	an	example:

P(dead,	male,	cabin3)	=	0.334

This	means	the	probability	of	a	randomly	selected	passenger	being	a	man	who
was	in	a	third-class	cabin	and	didn’t	survive	is	33	percent.	What	about	men	in
first	class?	That’s	in	the	table	too:

P(dead,	male,	cabin1)	=	0.087

This	means	that	a	selected	passenger	has	a	9	percent	chance	of	being	a	man	in
first	class	who	died.	We	can	see	that	class	differences,	in	cabins	and	society,
mattered	quite	a	bit.

Let’s	use	the	table	to	calculate	some	other	joint	and	marginal	probabilities.
First,	what’s	the	probability	of	not	surviving?	To	find	it,	we	need	to	sum	over
sex	and	cabin:

Here	we’ve	introduced	a	shorthand	notation	for	male/female	(M/F)	and	cabin
class	(1,	2,	3).

Let’s	calculate	the	probability	of	not	surviving	given	the	passenger	was	male,
P(dead|M).	To	do	this,	we	look	back	to	Equation	2.8,	remembering	that	the



“and”	implies	a	joint	probability.	We	rewrite	Equation	2.8	to	solve	for	P(B|A):

This	is	sometimes	used	to	define	the	conditional	probability	in	the	first	place.
Note,	P(A,	B)	means	P(A	and	B)—both	are	joint	probabilities.	Using	this	form,
the	probability	of	not	surviving	given	the	passenger	is	male	is

where	P(dead,	M)	is	the	joint	probability	of	being	dead	and	male,	and	P(M)	is
the	probability	of	being	male.

We	need	to	be	careful	when	thinking	about	the	probabilities.	P(dead,	M)	is
not	the	probability	of	not	surviving	if	the	passenger	is	male.	Instead,	it’s	the
probability	of	a	randomly	selected	passenger	being	a	male	who	didn’t	survive.
What	we	want	is	P(dead|M),	which	is	the	probability	of	not	surviving	given	a
passenger	was	male.

To	get	P(dead,	M),	we	need	to	sum	over	cabin	class:

To	get	P(M),	we	sum	over	survival	and	cabin	class:

To	finally	calculate	P(dead|M):

This	tells	us	that	81	percent	of	the	male	passengers	didn’t	survive.



This	tells	us	that	81	percent	of	the	male	passengers	didn’t	survive.
A	similar	calculation,	shown	below,	tells	us	the	probability	of	being	female

and	surviving:

We	see	that	women	were	far	more	likely	to	survive	than	men.	Here’s	one
instance	where	the	phrase	“women	and	children	first”	was	actually	the	case.	I
leave	it	as	an	exercise	for	you	to	calculate	the	individual	probabilities	in
P(alive|F).

We’ve	calculated	P(dead,	M),	the	probability	of	being	a	male	who	did	not
survive;	P(M),	the	probability	of	being	male;	and	P(dead|M),	the	probability	of
not	surviving	given	being	a	male.	Let’s	do	one	more	calculation	based	on	Table
2-2.	Let’s	find	P(dead	or	M),	the	probability	of	not	surviving,	or	being	male.

Equation	2.6	tells	us	that	this	is	the	probability:

If	we	look	at	Equation	2.9	and	Equation	2.11,	we	see	that	both	have	the	same
terms,	the	very	terms	summed	in	Equation	2.10.	This	is	why	we	must	subtract
P(dead,	M)	from	the	calculation	of	P(dead	or	M)	to	avoid	double-counting.

To	summarize,	then:

The	joint	probability	is	the	probability	of	two	or	more	random	variables
having	a	specific	set	of	values.	The	joint	probability	is	often	represented	as
a	table.
The	marginal	probability	for	a	random	variable	is	found	by	summing	over
all	the	possible	values	of	the	other	random	variables.

The	product	rule	with	a	conditional	probability	tells	us	how	to	calculate	the
joint	probability	given	a	conditional	probability	and	an	unconditional	probability
when	we	have	two	random	variables.	Let’s	now	see	how	to	use	the	chain	rule	for
probability	to	generalize	that	idea.

Chain	Rule	for	Probability



Chain	Rule	for	Probability
Equation	2.8	tells	us	how	to	calculate	the	joint	probability	for	two	random
variables	in	terms	of	the	conditional	probability.	By	using	the	chain	rule	for
probability,	we	can	expand	Equation	2.8	and	calculate	the	joint	probability	for
more	than	two	random	variables.

In	its	generic	form,	the	chain	rule	for	the	joint	probability	of	n	random
variables	is	as	follows:

Here	⋂	is	used	to	indicate	“and”	for	joint	probabilities.	Equation	2.12	looks
impressive,	but	it’s	not	hard	to	follow,	as	we’ll	see	with	a	few	examples.	I	need
to	use	⋂	in	the	equation	for	the	joint	part	of	the	conditional	probabilities,	but	in
the	examples,	I’ll	use	a	comma,	and	you’ll	see	the	pattern	quickly	enough.

Here’s	how	the	chain	rule	breaks	up	a	joint	probability	with	three	random
variables:

The	first	line	says	the	probability	of	X,	Y,	and	Z	is	the	product	of	the
probability	of	X	given	Y	and	Z	and	the	probability	of	Y	and	Z.	This	is	Equation
2.8	with	X	for	B	and	Y,	Z	for	A.	The	second	line	applies	the	chain	rule	to	P(Y,	Z)
to	get	P(Y|Z)P(Z).	The	rule	can	be	applied	in	sequence,	like	a	chain,	hence	the
name.

What	about	a	joint	probability	with	four	random	variables?	We	get	the
following:

Let’s	work	through	an	example	that	uses	the	chain	rule.	Say	we’re	very
social	and	have	50	people	at	our	party.	Four	of	the	50	people	have	been	to
Boston	in	the	fall.	We	pick	three	people	at	random.	What’s	the	probability	that
none	of	them	have	been	to	Boston	in	the	fall?



We’ll	use	Ai	to	indicate	the	event	of	a	person	who	has	not	been	to	Boston	in
the	fall.	Therefore,	what	we	want	to	find	is	P(A3,	A2,	A1),	the	probability	of	three
people	all	of	whom	have	not	been	to	Boston	in	the	fall.	The	chain	rule	lets	us
break	this	probability	up	like	so:

We	can	work	with	the	right-hand	side	of	this	equation	intuitively.	Look	at
P(A1).	This	is	the	probability	of	picking	a	random	person	in	the	room	who	has
not	been	to	Boston	in	the	fall.	Four	of	the	people	have,	so	46	have	not,	and	we
see	that	P(A1)	=	46/50.	Once	we	have	a	person	picked,	we	need	to	know	the
probability	of	selecting	a	second	person	from	the	remaining	49,	that’s	P(A2|A1)	=
45/49.	There	are	only	49	people	left,	and	we	haven’t	selected	one	of	the	four
who	has	been	to	Boston	in	the	fall.	Finally,	we	have	two	people	selected,	so
there	are	48	people	in	the	room,	44	of	whom	have	not	been	to	Boston	in	the	fall.
This	means	P(A3|A2,	A1)	=	44/48.

We	are	now	ready	to	answer	our	initial	question.	The	probability	of	selecting
three	people	from	the	room	with	none	of	them	having	been	to	Boston	in	the	fall
is	as	follows:

That’s	slightly	more	than	77	percent.
We	can	check	if	our	calculation	is	reasonable	by	simulating	many	draws	of

three	people.	This	is	the	code	we	need:

nb	=	0
N	=	100000
for	i	in	range(N):
				s	=	np.random.randint(0,50,3)
				fail	=	False
				for	t	in	range(3):
								if	(s[t]	<	4):
												fail	=	True
				if	(not	fail):
								nb	+=	1



print("No	Boston	in	the	fall	=	%0.4f"	%	(nb/N,))

We’ll	run	100,000	simulations.	Every	time	we	select	three	people	out	of	50
who	haven’t	been	to	Boston	in	the	fall,	we’ll	increment	nb.	We	simulate	selecting
three	people	by	choosing	three	random	integers	in	the	range	[0,	50)	and	putting
them	in	s.	Then,	we	look	at	each	of	the	three	integers,	asking	if	any	are	less	than
four.	If	any	are,	we	say	we	selected	a	person	who	has	been	to	Boston	and	set	fail
to	True.	If	none	of	the	three	integers	are	less	than	four,	we	were	successful	with
this	simulation.	When	done,	we	print	the	fraction	of	simulations	that	did	sample
three	people	who	never	went	to	Boston	in	the	fall.

Running	this	code	produced

No	Boston	in	the	fall	=	0.7780

which	is	close	enough	to	our	calculated	value	to	give	us	confidence	that	we
found	the	correct	answer.

Summary
This	chapter	introduced	the	fundamentals	of	probability.	We	explored	basic
concepts	of	probability,	including	sample	spaces	and	random	variables.	We
followed	with	some	examples	of	how	poor	humans	can	be	at	probability.	After
that,	we	considered	the	rules	of	probability,	with	examples.	The	rules	led	us	to
joint	and	marginal	probabilities	and	finally	to	the	chain	rule	for	probabilities.

The	next	chapter	continues	our	tour	of	probability,	starting	with	probability
distributions	and	how	to	sample	from	them	and	ending	with	Bayes’	theorem,
which	shows	us	correct	way	to	compare	conditional	probabilities.



3
MORE	PROBABILITY

Chapter	2	introduced	us	to	basic	concepts	of	probability.	In	this	chapter,	we’ll
continue	our	exploration	of	probability	by	focusing	on	two	essential	topics	often
encountered	in	deep	learning	and	machine	learning:	probability	distributions	and
how	to	sample	from	them,	and	Bayes’	theorem.	Bayes’	theorem	is	one	of	the
most	important	concepts	in	probability	theory,	and	it	has	produced	a	paradigm
shift	in	the	way	many	researchers	think	about	probability	and	how	to	apply	it.

Probability	Distributions
A	probability	distribution	can	be	thought	of	as	a	function	that	generates	values
on	demand.	The	values	generated	are	random—we	don’t	know	which	one	will
appear—but	the	likelihood	of	any	value	appearing	follows	a	general	form.	For
example,	if	we	roll	a	standard	die	many	times	and	tally	how	many	times	each
number	comes	up,	we	expect	that	in	the	long	run,	each	number	is	equally	likely.
Indeed,	that’s	the	entire	point	of	making	the	die	in	the	first	place.	Therefore,	the
probability	distribution	of	the	die	is	known	as	a	uniform	distribution,	since	each
number	is	equally	likely	to	appear.	We	can	imagine	other	distributions	favoring
one	value	or	range	of	values	over	others,	like	a	weighted	die	that	might	come	up
as	six	suspiciously	often.

Deep	learning’s	primary	reason	for	sampling	from	a	probability	distribution
is	to	initialize	the	network	before	training.	Modern	networks	select	the	initial
weights	and	sometimes	biases	from	different	distributions,	most	notably	uniform
and	normal.	The	uniform	distribution	is	familiar	to	us,	and	I’ll	discuss	the
normal	distribution,	a	continuous	distribution,	later.



normal	distribution,	a	continuous	distribution,	later.
I’ll	present	several	different	kinds	of	probability	distributions	in	this	section.

Our	focus	is	to	understand	the	shape	of	the	distribution	and	to	learn	how	to	draw
samples	from	it	using	NumPy.	I’ll	start	with	histograms	to	show	you	that	we	can
often	treat	histograms	as	approximations	of	a	probability	distribution.	Then	I’ll
discuss	common	discrete	probability	distributions.	These	are	distributions
returning	integer	values,	like	3	or	7.	Lastly,	I’ll	switch	to	continuous
distributions	yielding	floating-point	numbers,	like	3.8	or	7.592.

Histograms	and	Probabilities
Take	a	look	at	Table	3-1,	which	we	saw	in	Chapter	2.

Table	3-1:	The	Number	of	Combinations	of	Two	Dice	Leading	to	Different	Sums	(Copied	from	Table	2-1)

Su
m

Combinations Count Probability

2 1	+	1 1 0.0278
3 1	+	2,	2	+	1 2 0.0556
4 1	+	3,	2	+	2,	3	+	1 3 0.0833
5 1	+	4,	2	+	3,	3	+	2,

4	+	1
4 0.1111

6 1	+	5,	2	+	4,	3	+	3,
4	+	2,	5	+	1

5 0.1389

7 1	+	6,	2	+	5,	3	+	4,
4	+	3,	5	+	2,	6	+	1

6 0.1667

8 2	+	6,	3	+	5,	4	+	4,
5	+	3,	6	+	2

5 0.1389

9 3	+	6,	4	+	5,	5	+	4,
6	+	3

4 0.1111

10 4	+	6,	5	+	5,	6	+	4 3 0.0833
11 5	+	6,	6	+	5 2 0.0556
12 6	+	6 1 0.0278

36 1.0000

It	shows	how	two	dice	add	to	different	sums.	Don’t	look	at	the	actual	values;
look	at	the	shape	the	possible	combinations	make.	If	we	chop	off	the	last	two
columns,	turn	the	table	to	the	left,	and	replace	each	sum	with	an	“X,”	we	should
see	something	like	the	following.

×



×
× × ×
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You	can	see	that	there’s	a	definite	shape	and	symmetry	to	the	number	of
ways	to	arrive	at	each	sum.	This	kind	of	plot	is	called	a	histogram.	A	histogram
is	a	plot	tallying	the	number	of	things	that	fall	into	discrete	bins.	For	Table	3-1,
the	bins	are	the	numbers	2	through	12.	The	tally	is	a	possible	way	to	get	that
sum.	Histograms	are	often	represented	as	bar	graphs,	usually	vertical	bars,
though	they	need	not	be.	Table	3-1	is	basically	a	horizontal	histogram.	How
many	bins	are	used	in	the	histogram	is	up	to	the	maker.	If	you	use	too	few,	the
histogram	will	be	blocky	and	may	not	reveal	necessary	detail	because	interesting
features	have	all	been	lumped	into	the	same	bin.	Use	too	many	bins,	and	the
histogram	will	be	sparse,	with	many	bins	having	no	tallies.

Let’s	generate	some	histograms.	First,	we’ll	randomly	sample	integers	in
[0,9]	and	count	how	many	of	each	integer	we	get.	The	code	for	this	is
straightforward:

>>>	import	numpy	as	np
>>>	n	=	np.random.randint(0,10,10000)
>>>	h	=	np.bincount(n)
>>>	h
array([	975,	987,	987,	1017,	981,	1043,	1031,	988,	1007,	984])

We	first	set	n	to	an	array	of	10,000	integers	in	[0,	9].	We	then	use	np	.bincount
to	count	how	many	of	each	digit	we	have.	We	see	that	this	run	gave	us	975	zeros
and	984	nines.	If	the	NumPy	pseudorandom	generator	is	doing	its	job,	we
expect,	on	average,	to	have	1,000	of	each	digit	in	a	sample	of	10,000	digits.	We
expect	some	variation,	but	most	values	are	close	enough	to	1,000	to	be
convincing.

The	counts	above	tell	us	how	many	times	each	digit	appeared.	If	we	divide
each	bin	of	a	histogram	by	the	total	of	all	the	bins,	we	change	from	simple
counts	to	the	probability	of	that	bin	appearing.	For	the	random	digits	above,	we
get	the	probabilities	with

>>>	h	=	h	/	h.sum()
>>>	h



array([0.0975,	0.0987,	0.0987,	0.1017,	0.0981,	0.1043,	0.1031,	0.0988,
							0.1007,	0.0984])

which	tells	us	that	each	digit	did	appear	with	a	probability	of	about	0.1,	or	1	out
of	10.	This	trick	of	dividing	histogram	values	by	the	sum	of	the	counts	in	the
histogram	allows	us	to	estimate	probability	distributions	from	samples.	It	also
tells	us	the	likelihood	of	particular	values	appearing	when	sampling	from
whatever	process	generated	the	data	used	to	make	the	histogram.	You	should
note	that	I	said	we	could	estimate	the	probability	distribution	from	a	set	of
samples	drawn	from	it.	The	larger	the	number	of	samples,	the	closer	the
estimated	probability	distribution	will	be	to	the	actual	population	distribution
generating	the	samples.	We	will	never	get	to	the	actual	population	distribution,
but	given	the	limit	of	an	infinite	number	of	samples,	we	can	get	as	close	as	we
need	to.

Histograms	are	frequently	used	to	look	at	the	distribution	of	pixel	values	in
an	image.	Let’s	make	a	plot	of	the	histogram	of	the	pixels	in	two	images.	You
can	find	the	code	in	the	file	ricky.py.	(I	won’t	show	it	here,	as	it	doesn’t	add	to	the
discussion.)	The	images	used	are	two	example	grayscale	images	included	with
SciPy	in	scipy.misc.	The	first	shows	people	walking	up	stairs	(ascent),	and	the
second	is	the	face	of	a	young	raccoon	(face),	as	shown	in	Figure	3-1.

Figure	3-1:	People	ascending	(left)	and	“Ricky”	raccoon	(right)

Figure	3-2	provides	a	plot	of	the	histograms	for	each	image,	as	probabilities.
It	shows	two	very	different	distributions	of	gray	level	values	in	the	images.	For



the	raccoon	face,	the	distribution	is	more	spread	out	and	flatter,	while	the	ascent
image	has	a	spike	right	around	gray	level	128	and	a	few	bright	pixels.	The
distributions	tell	us	that	if	we	pick	a	random	pixel	in	the	face	image,	we’re	most
likely	to	get	one	around	gray	level	100,	but	an	arbitrary	pixel	in	the	ascent	image
will,	with	high	relative	likelihood,	be	closer	to	gray	level	128.

Figure	3-2:	Histograms	as	probabilities	for	two	512×512-pixel	grayscale	sample	images

Again,	histograms	tally	the	counts	of	how	many	items	fall	into	the
predefined	bins.	We	saw	for	the	images	that	the	histogram	as	probability
distribution	tells	us	how	likely	we	are	to	get	a	particular	gray	level	value	if	we
select	a	random	pixel.	Likewise,	the	probability	distribution	for	the	random
digits	in	the	example	before	that	tells	us	the	probability	of	getting	each	digit
when	we	ask	for	a	random	integer	in	the	range	[0,9].

Histograms	are	discrete	representations	of	a	probability	distribution.	Let’s
take	a	look	at	the	more	common	discrete	distributions	now.

Discrete	Probability	Distributions



Discrete	Probability	Distributions
We’ve	already	encountered	the	most	common	discrete	distribution	several	times:
it’s	the	uniform	distribution.	That’s	the	one	we	get	naturally	by	rolling	dice	or
flipping	coins.	In	the	uniform	distribution,	all	possible	outcomes	are	equally
likely.	A	histogram	of	a	simulation	of	a	process	drawing	from	a	uniform
distribution	is	flat;	all	outcomes	show	up	with	more	or	less	the	same	frequency.
We’ll	see	the	uniform	distribution	again	when	we	look	at	continuous
distributions.	For	now,	think	dice.

Let’s	look	at	a	few	other	discrete	distributions.

The	Binomial	Distribution
Perhaps	the	second	most	common	discrete	distribution	is	the	binomial
distribution.	This	distribution	represents	the	expected	number	of	events
happening	in	a	given	number	of	trials	if	each	event	has	a	specified	probability.
Mathematically,	the	probability	of	k	events	happening	in	n	trials	if	the
probability	of	the	event	happening	is	p	can	be	written	as

For	example,	what’s	the	probability	of	getting	three	heads	in	a	row	when
flipping	a	fair	coin	three	times?	From	the	product	rule,	we	know	the	probability
is

Using	the	binomial	formula,	we	get	the	same	answer	by	calculating

So	far,	not	particularly	helpful.	However,	what	if	the	probability	of	the	event
isn’t	0.5?	What	if	we	have	an	event,	say	the	likelihood	of	a	person	winning	Let’s
Make	a	Deal	by	not	changing	doors,	and	we	want	to	know	the	probability	that	7
people	out	of	13	will	win	by	not	changing	their	guess?	We	know	the	probability
of	winning	the	game	without	changing	doors	is	1/3—that’s	p.	We	then	have	13
trials	(n)	and	7	winners	(k).	The	binomial	formula	tells	us	the	likelihood	is



and,	if	the	players	do	switch	doors,

The	binomial	formula	gives	us	the	probability	of	a	given	number	of	events	in
a	given	number	of	trials	for	a	specified	probability	per	event.	If	we	fix	n	and	p
and	vary	k,	0	≤	k	≤	n,	we	get	the	probability	for	each	k	value.	This	gives	us	the
distribution.	For	example,	let	n	=	5	and	p	=	0.3,	then	0	≤	k	≤	5	with	the
probability	for	each	k	value	as

Allowing	for	rounding,	this	sums	to	1.0,	as	we	know	it	must	because	the	sum	of
probabilities	over	an	entire	sample	space	is	always	1.0.	Notice	that	we	calculate
all	the	possible	values	for	the	binomial	distribution	when	n	=	5.	Collectively,	this
specifies	the	probability	mass	function	(pmf).	The	probability	mass	function	tells
us	the	probability	associated	with	all	possible	outcomes.



The	binomial	distribution	is	parameterized	by	n	and	p.	For	n	=	5	and	=	p	=
0.3,	we	see	from	the	results	above	that	a	random	sample	from	such	a	binomial
distribution	will	return	1	most	often—some	36	percent	of	the	time.	How	can	we
draw	samples	from	a	binomial	distribution?	In	NumPy,	we	need	only	call	the
binomial	function	in	the	random	module:

>>>	t	=	np.random.binomial(5,	0.3,	size=1000)
>>>	s	=	np.bincount(t)
>>>	s
array([159,	368,	299,	155,		17,			2])
>>>	s	/	s.sum()
array([0.159,	0.368,	0.299,	0.155,	0.017,	0.002])

We	pass	binomial	the	number	of	trials	(5)	and	the	probability	of	success	for
each	trial	(0.3).	We	then	ask	for	1,000	samples	from	a	binomial	distribution	with
these	parameters.	Using	np.bincount,	we	see	that	the	most	commonly	returned
value	was	indeed	1,	as	we	calculated	above.	By	using	our	histogram	summation
trick,	we	get	a	probability	of	0.368	for	selecting	a	1—close	to	the	0.3601	we
calculated.

The	Bernoulli	Distribution
The	Bernoulli	distribution	is	a	special	case	of	the	binomial	distribution.	In	this
case,	we	fix	n	=	1,	meaning	there’s	only	one	trial.	The	only	values	we	can
sample	are	0	or	1;	either	the	event	happens,	or	it	doesn’t.	For	example,	with	p	=
0.5,	we	get

>>>	t	=	np.random.binomial(1,	0.5,	size=1000)
>>>	np.bincount(t)
array([496,	504])

This	is	reasonable,	since	a	probability	of	0.5	means	we’re	flipping	a	fair	coin,
and	we	see	that	the	proportion	of	heads	or	tails	is	roughly	equal.

If	we	change	to	p	=	0.3,	we	get

>>>	t	=	np.random.binomial(1,	0.3,	size=1000)
>>>	np.bincount(t)
array([665,	335])
>>>	335/1000
0.335

Again,	close	to	0.3,	as	we	expect	to	see.
Use	samples	from	a	binomial	distribution	when	you	want	to	simulate	events

with	a	known	probability.	With	the	Bernoulli	form,	we	can	sample	binary



with	a	known	probability.	With	the	Bernoulli	form,	we	can	sample	binary
outcomes,	0	or	1,	where	the	likelihood	of	the	event	need	not	be	that	of	the	flip	of
a	fair	coin,	0.5.

The	Poisson	Distribution
Sometimes,	we	don’t	know	the	probability	of	an	event	happening	for	any
particular	trial.	Instead,	we	might	know	the	average	number	of	events	that
happen	over	some	interval,	say	of	time.	If	the	average	number	of	events	that
happen	over	some	time	is	λ	(lambda),	then	the	probability	of	k	events	happening
in	that	interval	is

This	is	the	Poisson	distribution,	and	it’s	useful	to	model	events	like
radioactive	decay	or	the	incidence	of	photons	on	an	X-ray	detector	over	some
period	of	time.	To	sample	events	according	to	this	distribution,	we	use	poisson
from	the	random	module.	For	example,	assume	over	some	time	interval	there	are
five	events	on	average	(λ	=	5).	What	sort	of	probability	distribution	do	we	get
using	the	Poisson	distribution?	In	code,

>>>	t	=	np.random.poisson(5,	size=1000)
>>>	s	=	np.bincount(t)
>>>	s
array([		6,		36,		83,	135,	179,	173,	156,	107,		58,		40,		20,			4,			2,
									0,			0,			1])
>>>	t.max()
15
>>>	s	=	s	/	s.sum()
>>>	s
array([0.006,	0.036,	0.083,	0.135,	0.179,	0.173,	0.156,	0.107,	0.058,
							0.04	,	0.02	,	0.004,	0.002,	0.			,	0.			,	0.001])

Here,	we	see	that,	unlike	the	binomial	distribution,	which	could	not	select	more
than	n	events,	the	Poisson	distribution	can	select	numbers	of	events	that	exceed
the	value	of	λ.	In	this	case,	the	largest	number	of	events	in	the	time	interval	was
15,	which	is	three	times	the	average.	You’ll	find	that	the	most	frequent	number
of	events	is	right	around	the	average	of	five,	as	you	might	expect,	but	significant
deviations	from	the	average	are	possible.

The	Fast	Loaded	Dice	Roller



What	if	we	need	to	draw	samples	according	to	an	arbitrary	discrete	distribution?
Earlier,	we	saw	some	histograms	based	on	images.	In	that	case,	we	could	sample
from	the	distribution	represented	by	the	histogram	by	picking	pixels	in	the	image
at	random.	But	what	if	we	wanted	to	sample	integers	according	to	arbitrary
weights?	To	do	this,	we	can	use	the	new	Fast	Loaded	Dice	Roller	of	Saad,	et	al.1

The	Fast	Loaded	Dice	Roller	(FLDR)	lets	us	specify	an	arbitrary	discrete
distribution	and	then	draw	samples	from	it.	The	code	is	in	Python	and	freely
available.	(See	https://github.com/probcomp/fast-loaded-dice-roller/.)	I’ll	show
how	to	use	the	code	to	sample	according	to	a	generic	distribution.	I	recommend
downloading	just	the	fldr.py	and	fldrf.py	files	from	the	GitHub	repository	instead	of
running	setup.py.	Additionally,	edit	the	.fldr	import	lines	in	fldrf.py	to	remove	the	“.”
so	they	read

from	fldr	import	fldr_preprocess_int
from	fldr	import	fldr_s

Using	FLDR	requires	two	steps.	The	first	is	to	tell	it	the	particular
distribution	you	want	to	sample	from.	You	define	the	distribution	as	ratios.	(For
our	purposes,	we’ll	use	actual	probabilities,	meaning	our	distribution	will	always
add	up	to	1.0.)	This	is	the	preprocessing	step,	which	we	only	need	to	do	once	for
each	distribution.	After	that,	we	can	draw	samples.	An	example	will	clarify:

>>>	from	fldrf	import	fldr_preprocess_float_c
>>>	from	fldr	import	fldr_sample
>>>	x	=	fldr_preprocess_float_c([0.6,0.2,0.1,0.1])
>>>	t	=	[fldr_sample(x)	for	i	in	range(1000)]
>>>	np.bincount(t)
array([598,	190,	108,	104])

First,	we	import	the	two	FLDR	functions	we	need:	fldr_preprocess_float	_c	and
fldr_sample.	Then	we	define	the	distribution	using	a	list	of	four	numbers.	Four
numbers	imply	samples	will	be	integers	in	[0,	3].	However,	unlike	a	uniform
distribution,	here	we’re	specifying	we	want	zero	60	percent	of	the	time,	one	20
percent	of	the	time,	and	two	and	three	10	percent	of	the	time	each.	The
information	that	FLDR	needs	to	sample	from	the	distribution	is	returned	in	x.

Calling	fldr_sample	returns	a	single	sample	from	the	distribution.	Notice	two
things:	first,	we	need	to	pass	x	in,	and	second,	FLDR	doesn’t	use	NumPy,	so	to
draw	1,000	samples,	we	use	a	standard	Python	list	comprehension.	The	1,000
samples	are	in	the	list,	t.	Finally,	we	generate	the	histogram	and	see	that	nearly
60	percent	of	the	samples	are	zero	and	slightly	more	than	10	percent	are	three,	as

https://github.com/probcomp/fast-loaded-dice-roller/


we	intended.
Let’s	use	the	histogram	of	the	raccoon	face	image	we	used	earlier	to	see	if

FLDR	will	follow	a	more	complex	distribution.	We’ll	load	the	image,	generate
the	histogram,	convert	it	to	a	probability	distribution,	and	use	the	probabilities	to
set	up	FLDR.	After	that,	we’ll	draw	25,000	samples	from	the	distribution,
compute	the	histogram	of	the	samples,	and	plot	that	histogram	along	with	the
original	histogram	to	see	if	FLDR	follows	the	actual	distribution	we	give	it.	The
code	we	need	is

from	scipy.misc	import	face
im	=	face(True)
b	=	np.bincount(im.ravel(),	minlength=256)
b	=	b	/	b.sum()
x	=	fldr_preprocess_float_c(list(b))
t	=	[fldr_sample(x)	for	i	in	range(25000)]
q	=	np.bincount(t,	minlength=256)
q	=	q	/	q.sum()

Running	this	code	leaves	us	with	b,	a	probability	distribution	from	the
histogram	of	the	face	image,	and	q,	the	distribution	created	from	25,000	samples
from	the	FLDR	distribution.	Figure	3-3	shows	us	a	plot	of	the	two	distributions.

The	solid	line	in	Figure	3-3	is	the	probability	distribution	we	supplied	to
fldr_preprocess_float_c	representing	the	distribution	of	gray	levels	(intensities)	in	the
raccoon	image.	The	dashed	line	is	the	histogram	of	the	25,000	samples	from	this
distribution.	As	we	can	see,	they	follow	the	requested	distribution	with	the	sort
of	variation	we	expect	from	such	a	small	number	of	samples.	As	an	exercise,
change	the	number	of	samples	from	25,000	to	500,000	and	plot	the	two	curves.
You’ll	see	that	they’re	now	virtually	on	top	of	each	other.



Figure	3-3:	Comparing	the	Fast	Loaded	Dice	Roller	distribution	(dashed)	to	the	distribution	generated
from	the	SciPy	face	image	(solid)

Discrete	distributions	generate	integers	with	specific	likelihoods.	Let’s	leave
them	now	and	consider	continuous	probability	distributions,	which	return
floating-point	values	instead.

Continuous	Probability	Distributions
I	haven’t	discussed	continuous	probabilities	yet	in	this	chapter.	In	part,	not	doing
so	was	to	make	the	concepts	behind	probability	easier	to	follow.	A	continuous
probability	distribution,	like	a	discrete	one,	has	a	particular	shape.	However,
instead	of	assigning	a	probability	to	a	specific	integer	value,	as	we	saw	above,
the	probability	of	selecting	a	particular	value	from	a	continuous	distribution	is
zero.	The	probability	of	a	specific	value,	a	real	number,	is	zero	because	there	are
an	infinite	number	of	possible	values	from	a	continuous	distribution;	this	means
no	particular	value	can	be	selected.	Instead,	what	we	talk	about	is	the	probability
of	selecting	values	in	a	specific	range	of	values.



of	selecting	values	in	a	specific	range	of	values.
For	example,	the	most	common	continuous	distribution	is	the	uniform

distribution	over	[0,	1].	This	distribution	returns	any	real	number	in	that	range.
Although	the	probability	of	returning	a	specific	real	number	is	zero,	we	can	talk
about	the	probability	of	returning	a	value	in	a	range,	such	as	[0,	0.25].

Consider	again	the	uniform	distribution	over	[0,	1].	We	know	that	the	sum	of
all	the	individual	probabilities	from	zero	to	one	is	1.0.	So,	what	is	the	probability
of	sampling	a	value	from	this	distribution	and	having	that	value	be	in	the	range
[0,	0.25]?	All	values	are	equally	likely,	and	all	add	to	1.0,	so	we	must	have	a	25
percent	chance	of	returning	a	value	in	[0,	0.25].	Similarly,	we	have	a	25	percent
chance	of	returning	a	value	in	[0.75,	1],	as	that	also	covers	1/4	of	the	possible
range.

When	we	talk	about	summing	infinitely	small	things	over	a	range,	we’re
talking	about	integration,	the	part	of	calculus	that	we	won’t	cover	in	this	book.
Conceptually,	however,	we	can	understand	what’s	happening	if	we	think	about	a
discrete	distribution	in	the	limit	where	the	number	of	values	it	can	return	goes	to
infinity,	and	we’re	summing	the	probabilities	over	some	range.

We	also	can	think	about	this	graphically.	Figure	3-4	shows	the	continuous
probability	distributions	I’ll	discuss.



Figure	3-4:	Some	common	continuous	probability	distributions

To	get	the	probability	of	sampling	a	value	in	some	range,	we	add	up	the	area
under	the	curve	over	that	range.	Indeed,	this	is	precisely	what	integration	does;
the	integration	symbol	(∫)	is	nothing	more	than	a	fancy	“S”	for	sum.	It’s	the
continuous	version	of	∑	for	summing	discrete	values.

The	distributions	in	Figure	3-4	are	the	most	common	ones	you’ll	encounter,
though	there	are	many	others	useful	enough	to	be	given	names.	All	of	these
distributions	have	associated	probability	density	functions	(pdfs),	closed-form
functions	that	generate	the	probabilities	that	sampling	from	the	distribution	will
give.	I	generated	the	curves	in	Figure	3-4	instead	using	the	code	in	the	file
continuous.py.	The	curves	are	estimates	of	the	probability	density	functions,	and	I
created	them	from	the	histogram	of	a	large	number	of	samples.	I	did	so



intentionally	to	demonstrate	that	the	NumPy	random	functions	sampling	from
these	distributions	do	what	they	claim.

Pay	little	attention	to	the	x-axis	in	Figure	3-4.	The	distributions	have
different	ranges	of	output;	they’re	scaled	here	to	fit	all	of	them	on	the	graph.	The
important	thing	to	notice	is	their	shapes.	The	uniform	distribution	is,	well,
uniform	over	the	entire	range.	The	normal	curve,	also	frequently	called	a
Gaussian	or	a	bell	curve,	is	the	second	most	common	distribution	used	in	deep
learning.	For	example,	the	He	initialization	strategy	for	neural	networks	samples
initial	weights	from	a	normal	distribution.

The	code	generating	the	data	for	Figure	3-4	is	worth	considering,	as	it	shows
us	how	to	use	NumPy	to	get	samples:

N	=	10000000
B	=	100
t	=	np.random.random(N)
u	=	np.histogram(t,	bins=B)[0]
u	=	u	/	u.sum()
t	=	np.random.normal(0,	1,	size=N)
n	=	np.histogram(t,	bins=B)[0]
n	=	n	/	n.sum()
t	=	np.random.gamma(5.0,	size=N)
g	=	np.histogram(t,	bins=B)[0]
g	=	g	/	g.sum()
t	=	np.random.beta(5,2,	size=N)
b	=	np.histogram(t,	bins=B)[0]
b	=	b	/	b.sum()

NOTE
We’re	using	the	classic	NumPy	functions	here,	not	the	newer
Generator-based	functions.	NumPy	updated	the	pseudorandom	number
code	in	recent	versions,	but	the	overhead	of	using	the	new	code	will
detract	from	what	we	want	to	see	here.	Unless	you’re	very	serious
about	pseudorandom	number	generation,	the	older	functions,	and	the
Mersenne	Twister	pseudorandom	number	generator	they’re	based	on,
will	be	more	than	adequate.

To	make	the	plots,	we	first	use	10	million	samples	from	each	distribution	(N).
Then,	we	use	100	bins	in	the	histogram	(B).	Again,	the	x-axis	range	when
plotting	isn’t	of	interest	here,	only	the	shapes	of	the	curves.

The	uniform	samples	use	random,	a	function	we’ve	seen	before.	Passing	the



samples	to	histogram	and	applying	the	“divide	by	the	sum”	trick	creates	the
probability	curve	data	(u).	We	repeat	this	process	for	the	Gaussian	(normal),
Gamma	(gamma),	and	Beta	(beta)	distributions	as	well.

You’ll	notice	that	normal,	gamma,	and	beta	accept	arguments.	These	distributions
are	parameterized;	their	shape	is	altered	by	changing	these	parameters.	For	the
normal	curve,	the	first	parameter	is	the	mean	(μ),	and	the	second	is	the	standard
deviation	(σ).	Some	68	percent	of	the	normal	curve	lies	within	one	standard
deviation	of	the	mean,	[μ	–	σ,	μ	+	σ].	The	normal	curve	is	ubiquitous	in	math
and	nature,	and	one	could	write	an	entire	book	on	it	alone.	It’s	always	symmetric
around	its	mean	value.	The	standard	deviation	controls	how	wide	or	narrow	the
curve	is.

The	gamma	distribution	is	also	parameterized.	It	accepts	two	parameters:	the
shape	(k)	and	the	scale	(θ).	Here,	k	=	5,	and	the	scale	is	left	at	its	default	value	of
θ	=	1.	As	the	shape	increases,	the	gamma	distribution	becomes	more	and	more
like	a	Gaussian,	with	a	bump	that	moves	toward	the	center	of	the	distribution.
The	scale	parameter	affects	the	horizontal	size	of	the	bump.

Likewise,	the	beta	distribution	uses	two	parameters,	a	and	b.	Here,	a	=	5	and
b	=	2.	If	a	>	b,	the	hump	of	the	distribution	is	on	the	right;	if	reversed,	it	is	on	the
left.	If	a	=	b,	the	beta	distribution	becomes	the	uniform	distribution.	The
flexibility	of	the	beta	distribution	makes	it	quite	handy	for	simulating	different
processes,	as	long	as	you	can	find	a	and	b	values	approximating	the	probability
distribution	you	want.	However,	depending	on	the	precision	you	require,	the	new
Fast	Loaded	Dice	Roller	we	saw	in	the	previous	section	might	be	a	better	option
in	practice	if	you	have	a	sufficiently	detailed	discrete	distribution	approximation
of	the	continuous	distribution.

Table	3-2	shows	us	the	probability	density	functions	for	the	normal,	gamma,
and	beta	distributions.	An	exercise	for	the	reader	is	to	use	these	functions	to
recreate	Figure	3-4.	Your	results	will	be	smoother	still	than	the	curves	in	the
figure.	You	can	calculate	the	B(a,	b)	integral	in	Table	3-2	by	using	the	function
scipy.special.beta.	For	Γ(k),	see	scipy.special.gamma.	Additionally,	if	the	argument	to	the
Γ	function	is	an	integer,	Γ(n	+	1)	=	n!,	so	Γ(5)	=	Γ(4	+	1)	=	4!	=	24.

Table	3-2:	The	Probability	Density	Functions	for	the	Normal,	Gamma,	and	Beta	Distributions

normal

gamma



beta

If	you’re	interested	in	ways	to	sample	values	from	these	distributions,	my
book	Random	Numbers	and	Computers	(Springer,	2018)	discusses	these
distributions	and	others	in	more	depth	than	we	can	provide	here,	including
implementations	in	C	for	generating	samples	from	them.	For	now,	let’s	examine
one	of	the	most	important	theorems	in	probability	theory.

Central	Limit	Theorem
Imagine	we	draw	N	samples	from	some	distribution	and	calculate	the	mean
value,	m.	If	we	repeat	this	exercise	many	times,	we’ll	get	a	set	of	mean	values,
{m0,	m1,	.	.	.},	each	from	a	set	of	samples	from	the	distribution.	It	doesn’t	matter
if	N	is	the	same	each	time,	but	N	shouldn’t	be	too	small.	The	rule	of	thumb	is
that	N	should	be	at	least	30	samples.

The	central	limit	theorem	states	that	the	histogram	or	probability	distribution
generated	from	this	set	of	sample	means,	the	m’s,	will	approach	a	Gaussian	in
shape	regardless	of	the	shape	of	the	distribution	the	samples	were	drawn	from	in
the	first	place.

For	example,	this	code

M	=	10000
m	=	np.zeros(M)
for	i	in	range(M):
				t	=	np.random.beta(5,2,size=M)
				m[i]	=	t.mean()

creates	10,000	sets	of	samples	from	a	beta	distribution,	Beta(5,2),	each	with
10,000	samples.	The	mean	of	each	set	of	samples	is	stored	in	m.	If	we	run	this
code	and	plot	the	histogram	of	m,	we	get	Figure	3-5.



Figure	3-5:	The	distribution	of	mean	values	of	10,000	sets	of	samples	of	10,000	from	Beta(5,2)

The	shape	of	Figure	3-5	is	decidedly	Gaussian.	Again,	the	shape	is	a
consequence	of	the	central	limit	theorem	and	does	not	depend	on	the	shape	of
the	underlying	distribution.	Figure	3-5	tells	us	that	the	sample	means	from	many
sets	of	samples	from	Beta(5,2)	themselves	have	a	mean	of	about	0.714.	The
mean	of	the	sample	means	(m.mean())	is	0.7142929	for	one	run	of	the	code	above.

There’s	a	formula	to	calculate	the	mean	value	of	a	Beta	distribution.	The
population	mean	value	of	a	Beta(5,2)	distribution	is	known	to	be	a/(a	+	b)	=	5/(5
+	2)	=	5/7	=	0.714285.	The	mean	of	the	plot	in	Figure	3-5	is	a	measurement	of
the	true	population	mean,	of	which	the	many	means	from	the	Beta(5,2)	samples
are	only	estimates.

Let’s	explain	this	again	to	really	follow	what’s	going	on.	For	any
distribution,	like	the	Beta(5,2)	distribution,	if	we	draw	N	samples,	we	can
calculate	the	mean	of	those	samples,	a	single	number.	If	we	repeat	this	process
for	many	sets	of	N	samples,	each	with	its	own	mean,	and	we	make	a	histogram



of	the	distribution	of	the	means	we	measured,	we’ll	get	a	plot	like	Figure	3-5.
That	plot	tells	us	that	all	of	the	many	sample	means	are	themselves	clustered
around	a	mean	value.	The	mean	value	of	the	means	is	a	measure	of	the
population	mean.	It’s	the	mean	we’d	get	if	we	could	draw	an	infinite	number	of
samples	from	the	distribution.	If	we	change	the	code	above	to	use	the	uniform
distribution,	we’ll	get	a	population	mean	of	0.5.	Similarly,	if	we	switch	to	a
Gaussian	distribution	with	a	mean	of	11,	the	resulting	histogram	will	be	centered
at	11.

Let’s	prove	this	claim	again	but	this	time	with	a	discrete	distribution.	Let’s
use	the	Fast	Loaded	Dice	Roller	to	generate	samples	from	a	lopsided	discrete
distribution	using	this	code:

from	fldrf	import	fldr_preprocess_float_c
from	fldr	import	fldr_sample
z	=	fldr_preprocess_float_c([0.1,0.6,0.1,0.1,0.1])
m	=	np.zeros(M)
for	i	in	range(M):
				t	=	np.array([fldr_sample(z)	for	i	in	range(M)])
				m[i]	=	t.mean()

Figure	3-6	shows	the	discrete	distribution	(top)	and	the	corresponding
distribution	of	the	sample	means	(bottom).

From	the	probability	mass	function,	we	can	see	that	the	most	frequent	value
we	expect	from	the	sample	is	1,	with	a	probability	of	60	percent.	However,	the
tail	on	the	right	means	we’ll	also	get	values	2	through	4	about	30	percent	of	the
time.	The	weighted	mean	of	these	is	0.6(1)	+	0.1(2)	+	0.1(3)	+	0.1(4)	=	1.5,
which	is	precisely	the	mean	of	the	sample	distribution	on	the	bottom	of	Figure	3-
6.	The	central	limit	theorem	works.	We’ll	revisit	the	central	limit	theorem	in
Chapter	4	when	we	discuss	hypothesis	testing.





Figure	3-6:	An	arbitrary	discrete	distribution	(top)	and	the	distribution	of	sample	means	drawn	from	it
(bottom)

The	Law	of	Large	Numbers
A	concept	related	to	the	central	limit	theorem,	and	often	confused	with	it,	is	the
law	of	large	numbers.	The	law	of	large	numbers	states	that	as	the	size	of	a
sample	from	a	distribution	increases,	the	mean	of	the	sample	moves	closer	and
closer	to	the	mean	of	the	population.	In	this	case,	we’re	contemplating	a	single
sample	from	the	distribution	and	making	a	statement	about	how	close	we	expect
its	mean	to	be	to	the	true	population	mean.	For	the	central	limit	theorem,	we
have	many	different	sets	of	samples	from	the	distribution	and	are	making	a
statement	about	the	distribution	of	the	means	of	those	sets	of	samples.

We	can	demonstrate	the	law	of	large	numbers	quite	simply	by	selecting
larger	and	larger	size	samples	from	a	distribution	and	tracking	the	mean	as	a
function	of	the	sample	size	(the	number	of	samples	drawn).	In	code,	then,

m	=	[]
for	n	in	np.linspace(1,8,30):
				t	=	np.random.normal(1,1,size=int(10**n))
				m.append(t.mean())

where	we’re	drawing	ever-larger	sample	sizes	from	a	normal	distribution	with	a
mean	of	1.	The	first	sample	size	is	10,	and	the	last	is	100	million.	If	we	plot	the
mean	of	the	samples	as	a	function	of	sample	size,	we	see	the	law	of	large
numbers	at	work.

Figure	3-7	shows	the	sample	means	as	a	function	of	the	number	of	samples
for	the	normal	distribution	with	a	mean	of	1	(dashed	line).	As	the	number	of
samples	from	the	distribution	increases,	the	mean	of	the	samples	approaches	the
population	mean,	which	illustrates	the	law	of	large	numbers.



Figure	3-7:	The	law	of	large	numbers	in	action

Let’s	change	gears	and	move	on	to	Bayes’	theorem,	the	last	topic	for	this
chapter.

Bayes’	Theorem
In	Chapter	2,	we	discussed	an	example	where	we	determined	whether	a	woman
had	cancer.	There,	I	promised	that	Bayes’	theorem	would	tell	us	how	to	properly
account	for	the	probability	of	a	randomly	selected	woman	in	her	40s	having
breast	cancer.	Let’s	fulfill	that	promise	in	this	section	by	learning	what	Bayes’
theorem	is	and	how	to	use	it.

Using	the	product	rule,	Equation	2.8,	we	know	the	following	two
mathematical	statements	are	true:

P(B,	A)	=	P(B|A)P(A)

P(A,	B)	=	P(A|B)P(B)



Additionally,	because	the	joint	probability	of	both	A	and	B	doesn’t	depend	on
which	event	we	call	A	and	which	we	call	B,

P(A,	B)	=	P(B,	A)

Therefore,

P(B|A)P(A)	=	P(A|B)P(B)

Dividing	by	P(A),	we	get

This	is	Bayes’	theorem,	the	heart	of	the	Bayesian	approach	to	probability,	and
the	proper	way	to	compare	two	conditional	probabilities:	P(B|A)	and	P(A|B).
You’ll	sometimes	see	Equation	3.1	referred	to	as	Bayes’	rule.	You’ll	also	often
see	no	apostrophe	after	“Bayes,”	which	is	a	bit	sloppy	and	ungrammatical,	but
common.

Equation	3.1	has	been	enshrined	in	neon	lights,	tattoos,	and	even	baby
names:	“Bayes.”	The	equation	is	named	after	Thomas	Bayes	(1701–1761),	an
English	minister	and	statistician,	and	was	published	after	his	death.	In	words,
Equation	3.1	says	the	following:

The	posterior	probability,	P(B|A),	is	the	product	of	P(A|B),	the	likelihood,
and	P(B),	the	prior,	normalized	by	P(A),	the	marginal	probability	or
evidence.

Now	that	we	know	what	Bayes’	theorem	is,	let’s	see	it	in	action	so	we	can
understand	it.

Cancer	or	Not	Redux
One	way	to	think	about	the	components	of	Bayes’	theorem	is	in	the	context	of
medical	testing.	At	the	beginning	of	Chapter	2,	we	calculated	the	probability	of	a
woman	having	breast	cancer	given	a	positive	mammogram	and	found	that	it	was
quite	different	from	what	we	might	naively	have	believed	it	to	be.	Let’s	revisit
that	problem	now	using	Bayes’	theorem.	It	might	be	helpful	to	reread	the	first
section	of	Chapter	2	before	continuing.

We	want	to	use	Bayes’	theorem	to	find	the	posterior	probability,	the
probability	of	breast	cancer	given	a	positive	mammogram.	We’ll	write	this	as



P(bc	+	|+),	meaning	breast	cancer	(bc+)	given	a	positive	mammogram	(+).
In	the	problem,	we’re	told	that	the	mammogram	returns	a	positive	result,

given	the	patient	has	breast	cancer,	90	percent	of	the	time.	We	write	this	as

P(+|bc+)	=	0.9

This	is	the	likelihood	of	a	positive	mammogram	in	terms	of	Bayes’	equation,
P(A|B)	=	P(+|bc+).

Next,	we’re	told	the	probability	of	a	random	woman	having	breast	cancer	is
0.8	percent.	Therefore,	we	know

P(bc+)	=	0.008

This	is	the	prior	probability,	P(B),	in	Bayes’	theorem.
We	have	all	the	components	of	Equation	3.1	except	one:	P(A).		What	is	P(A)

in	this	context?	It’s	P(+),	the	marginal	probability	of	a	positive	mammogram
regardless	of	any	B,	any	breast	cancer	status.	It’s	also	the	evidence	that	we	have,
the	thing	we	know:	the	mammogram	was	positive.

In	the	problem,	we’re	told	there’s	a	7	percent	chance	a	woman	without	breast
cancer	has	a	positive	mammogram.	Is	this	P(+)?	No,	it	is	P(+|bc–),	the
probability	of	a	positive	mammogram	given	no	breast	cancer.

I’ve	referred	to	P(A)	as	the	marginal	probability	twice	now.	We	know	what
to	do	to	get	a	marginal	or	total	probability:	we	sum	over	all	the	other	parts	of	a
joint	probability	that	don’t	matter	for	what	we	want	to	know.	Here,	we	have	to
sum	over	all	the	partitions	of	the	sample	space	we	don’t	care	about	to	get	the
marginal	probability	of	a	positive	mammogram.	What	partitions	are	those?
There	are	only	two:	either	a	woman	has	breast	cancer	or	she	doesn’t.	Therefore,
we	need	to	find

P(+)	=	P(+|bc+)P(bc+)	+	P(+|bc–)P(bc–)

We	know	all	of	these	quantities	already,	except	P(bc–).	This	is	the	prior
probability	that	a	randomly	selected	woman	will	not	have	breast	cancer,	P(bc–)
=	1	–	P(bc+)	=	0.992.

Sometimes,	you’ll	see	the	summation	over	other	terms	in	the	joint
probability	expressed	in	the	denominator	of	Bayes’	theorem.	Even	if	they’re	not
explicitly	called	out,	they	are	there,	implicit	in	what	it	takes	to	find	P(A).

Finally,	we	have	all	the	pieces	and	can	calculate	the	probability	using	Bayes’



theorem:

This	is	the	result	we	found	earlier.	Recall,	a	large	percentage	of	doctors	in	the
study	claimed	the	probability	of	cancer	from	a	positive	mammogram,	P(A|B),
was	90	percent.	Their	mistake	was	incorrectly	equating	P(A|B)	with	P(B|A).
Bayes’	theorem	correctly	relates	the	two	by	using	the	prior	and	the	marginal
probability.

Updating	the	Prior
We	don’t	need	to	stop	with	this	single	calculation.	Consider	the	following:	what
if,	after	a	woman	receives	the	news	that	her	mammogram	is	positive,	she	decides
to	have	a	second	mammogram	at	another	facility	with	different	radiologists
reading	the	results,	and	that	mammogram	also	comes	back	positive?	Does	she
still	believe	that	her	probability	of	having	breast	cancer	is	9	percent?	Intuitively,
we	might	think	that	she	now	has	more	reason	to	believe	that	she	has	cancer.	Can
this	belief	be	quantified?	It	can,	in	the	Bayesian	view,	by	updating	the	prior,
P(bc+),	with	the	posterior	calculated	from	the	first	test,	P(bc	+	|+).	After	all,	she
now	has	a	stronger	prior	probability	of	cancer	given	the	first	positive
mammogram.

Let’s	calculate	this	new	posterior	based	on	the	previous	mammogram	result:



As	57	percent	is	significantly	higher	than	9	percent,	our	hypothetical	woman
now	has	significantly	more	reason	to	believe	she	has	breast	cancer.

Notice	what	has	changed	in	this	new	calculation,	besides	a	dramatic	increase
in	the	posterior	probability	of	breast	cancer	given	the	second	mammogram’s
positive	result.	First,	the	prior	probability	of	breast	cancer	went	from	0.008	→
0.094,	the	posterior	calculated	based	on	the	first	test.	Second,	P(bc–)	also
changed	from	0.992	→	0.906.	Why?	Because	the	prior	changed	and	P(bc–)	=	1	–
P(bc+).	The	sum	of	P(bc+)	and	P(bc–)	must	still	be	1.0—either	she	has	breast
cancer,	or	she	doesn’t—that’s	the	entire	sample	space.

In	the	example	above,	we	updated	the	prior	based	on	the	initial	test	result,
and	we	had	an	initial	prior	given	to	us	in	the	first	example.	What	about	the	prior
in	general?	In	many	cases,	Bayesians	select	the	prior,	at	least	initially,	based	on
an	actual	belief	about	the	problem.	Often	the	prior	is	a	uniform	distribution,
known	as	the	uninformed	prior	because	there’s	nothing	to	guide	the	selection	of
anything	else.	For	the	breast	cancer	example,	the	prior	is	something	that	can	be
estimated	from	an	experiment	using	a	random	selection	of	women	from	the
general	population.

As	mentioned	earlier,	don’t	take	the	numbers	here	too	seriously;	they	are	for
example	use	only.	Also,	while	a	woman	certainly	has	the	option	to	get	a	second
opinion,	the	gold	standard	for	a	breast	cancer	diagnosis	is	biopsy,	the	likely	next
step	after	an	initial	positive	mammogram.	Finally,	throughout	this	section,	I’ve
referred	to	women	and	breast	cancer.	Men	also	get	breast	cancer,	though	it	is
rare,	with	less	than	1	percent	of	cases	in	men.	However,	it	made	the	discussion
simpler	to	refer	only	to	women.	I’ll	note	that	breast	cancer	cases	in	men	are	more
likely	to	be	fatal,	though	the	reasons	why	are	not	yet	known.

Bayes’	Theorem	in	Machine	Learning
Bayes’	theorem	is	prevalent	throughout	machine	learning	and	deep	learning.



One	classic	use	of	Bayes’	theorem,	one	that	can	work	surprisingly	well,	is	to	use
it	as	a	classifier.	This	is	known	as	the	Naive	Bayes	classifier.	Early	email	spam
filters	used	this	approach	quite	effectively.

Assume	we	have	a	dataset	consisting	of	class	labels,	y,	and	feature	vectors,	x.
The	goal	of	a	Naive	Bayes	classifier	is	to	tell	us,	for	each	class,	the	probability
that	a	given	feature	vector	belongs	to	that	class.	With	those	probabilities,	we	can
assign	a	class	label	by	selecting	the	largest	probability.	That	is,	we	want	to	find
P(y|x)	for	each	class	label,	y.	This	is	a	conditional	probability,	so	we	can	use
Bayes’	theorem	with	it:

The	equation	above	is	saying	that	the	probability	of	feature	vector	x
representing	an	instance	of	class	label	y	is	the	probability	of	the	class	label	y
generating	a	feature	vector	x	times	the	prior	probability	of	class	label	y
occurring,	divided	by	the	marginal	probability	of	the	feature	vector	over	all	class
labels.	Recall	the	implicit	sum	in	calculating	P(x).

How	is	this	useful	to	us?	Since	we	have	a	dataset,	we	can	estimate	P(y)	using
it,	assuming	the	dataset	class	distribution	is	a	fair	representation	of	what	we’d
encounter	when	using	the	model.	And,	since	we	have	labels,	we	can	partition	the
dataset	into	smaller,	per	class,	collections.	This	might	help	us	do	something
useful	to	get	the	likelihoods	per	class,	P(x|y).	We’ll	ignore	the	marginal	P(x)
completely.	Let’s	see	why,	in	this	case,	we’re	free	to	do	so.

Equation	3.2	is	for	a	particular	class	label,	say	y	=	1.	We’ll	have	other
versions	of	it	for	all	the	class	labels	in	the	dataset.	We	said	our	classifier	consists
of	calculating	the	posterior	probabilities	for	each	class	label	and	selecting	the
largest	one	as	the	label	assigned	to	an	unknown	feature	vector.	The	denominator
of	Equation	3.2	is	a	scale	factor,	which	makes	the	output	a	true	probability.	For
our	use	case,	however,	we	only	care	about	the	relative	ordering	of	P(y|x)	over
the	different	class	labels.	Since	P(x)	is	the	same	for	all	y,	it’s	a	common	factor
that	will	change	the	number	associated	with	P(y|x)	but	not	the	ordering	over	the
different	class	labels.	Therefore,	we	can	ignore	it	and	concentrate	on	finding	the
products	of	the	likelihoods	and	the	priors.	Although	the	largest	P(y|x)	calculated
this	way	is	no	longer	a	proper	probability,	it’s	still	the	correct	class	label	to
assign.

Given	that	we	can	ignore	P(x)	and	the	P(y)	values	are	easily	estimated	from
the	dataset,	we’re	left	with	calculating	P(x|y),	the	likelihood	that	given	the	class



label	is	y,	we’d	have	a	feature	vector	x.	What	can	we	do	in	this	case?
First,	we	can	think	about	what	P(x|y)	is.	It’s	a	conditional	probability	for

feature	vectors	given	the	feature	vectors	are	all	representatives	of	class	y.	For	the
moment,	let’s	ignore	the	y	part,	since	we	know	the	feature	vectors	all	come	from
class	y.

This	leaves	only	P(x)	because	we	fixed	y.	A	feature	vector	is	a	collection	of
individual	features,	x	=	(x0,	x1,	x2,	.	.	.,	xn–1)	for	n	features	in	the	vector.
Therefore,	P(x)	is	really	a	joint	probability,	the	probability	that	all	the	individual
features	have	their	specific	values	at	the	same	time.	So,	we	can	write

P(x)	=	P(x0,	x1,	x2,	.	.	.,	xn–1)

How	does	this	help?	If	we	make	one	more	assumption	about	our	data,	we’ll
see	that	we	can	break	up	this	joint	probability	in	a	convenient	way.	Let’s	assume
that	all	the	features	in	our	feature	vector	are	independent.	Recall	that
independent	means	the	value	of	x1,	say,	is	in	no	way	affected	by	the	value	of	any
other	feature	in	the	vector.	This	is	typically	not	quite	true,	and	for	things	like
pixels	in	images	definitely	not	true,	but	we’ll	assume	it’s	true	nonetheless.	We’re
naive	to	believe	it’s	true,	hence	the	Naive	in	Naive	Bayes.

If	the	features	are	independent,	then	the	probability	of	a	feature	taking	on	any
particular	value	is	independent	of	all	the	others.	In	that	case,	the	product	rule
tells	us	that	we	can	break	the	joint	probability	up	like	so:

P(x)	=	P(x0)P(x1)P(x2)	.	.	.	P(xn–1)

This	helps	tremendously.	We	have	a	dataset,	labeled	by	class,	allowing	us	to
estimate	the	probability	of	any	feature	for	any	specific	class	by	counting	how
often	each	feature	value	happens	for	each	class.

Let’s	put	it	all	together	for	a	hypothetical	dataset	of	three	classes—0,	1,	and
2—and	four	features.	We	first	use	the	dataset,	partitioned	by	class	label,	to
estimate	each	feature	value	probability.	This	provides	us	the	set	of	P(x0),	P(x1),
and	so	on,	for	each	feature	for	each	class	label.	Combined	with	the	prior
probability	of	the	class	label,	estimated	from	the	dataset	as	the	number	of	each
class	divided	by	the	total	number	of	samples	in	the	dataset,	we	calculate	for	a
new	unknown	feature	vector,	x,



Here,	the	P(x0)	feature	probabilities	are	specific	to	class	0	only,	and	P(0)	is	the
prior	probability	of	class	0	in	the	dataset.	P(0|x)	is	the	unnormalized	posterior
probability	that	the	unknown	feature	vector	x	belongs	to	class	0.	We	say
unnormalized	because	we’re	ignoring	the	denominator	of	Bayes’	theorem,
knowing	that	including	it	would	not	change	the	ordering	of	the	posterior
probabilities,	only	their	values.

We	can	repeat	the	calculation	above	to	get	P(1|x)	and	P(2|x),	making	sure	to
use	the	per	feature	probabilities	calculated	for	those	classes	(the	P(x0)s).	Finally,
we	give	x	the	class	label	for	the	largest	of	the	three	posteriors	calculated.

The	description	above	assumes	that	the	feature	values	are	discrete.	Usually
they	aren’t,	but	there	are	workarounds.	One	is	to	bin	the	feature	values	to	make
them	discrete.	For	example,	if	the	feature	ranges	over	[0,	3],	create	a	new	feature
that	is	0,	1,	or	2,	and	assign	the	continuous	feature	to	one	of	those	bins	by
truncating	any	fractional	part.

Another	workaround	is	to	make	one	more	assumption	about	the	distribution
the	feature	values	come	from	and	use	that	distribution	to	calculate	the	P(x0)s	per
class.	Features	are	often	based	on	measurements	in	the	real	world,	and	many
things	in	the	real	world	follow	a	normal	distribution.	Therefore,	typically	we’d
assume	that	the	individual	features,	while	continuous,	are	normally	distributed
and	we	can	find	estimates	of	the	mean	(μ)	and	standard	deviation	(σ)	from	the
dataset,	per	feature,	and	class	label.

Bayes’	theorem	is	useful	for	calculating	probabilities.	It’s	helpful	in	machine
learning	as	well.	The	battle	between	Bayesians	and	frequentists	appears	to	be
waning,	though	philosophical	differences	remain.	In	practice,	most	researchers
are	learning	that	both	approaches	are	valuable,	and	at	times	tools	from	both
camps	should	be	used.	We’ll	continue	this	trend	in	the	next	chapter,	where	we’ll
examine	statistics	from	a	frequentist	viewpoint.	We	defend	this	decision	by
pointing	out	that	the	vast	majority	of	published	scientific	results	in	the	last
century	used	statistics	this	way,	which	includes	the	deep	learning	community,	at
least	when	it’s	presenting	the	results	of	experiments.

Summary



This	chapter	taught	us	about	probability	distributions,	what	they	are,	and	how	to
draw	samples	from	them,	both	discrete	and	continuous.	We’ll	encounter
different	distributions	during	our	exploration	of	deep	learning.	We	also
discovered	Bayes’	theorem	and	saw	how	it	lets	us	properly	relate	conditional
probabilities.	We	saw	how	Bayes’	theorem	allows	us	to	evaluate	the	true
likelihood	of	cancer	given	an	imperfect	medical	test—a	common	situation.	We
also	learned	how	to	use	Bayes’	theorem,	along	with	some	of	the	basic
probability	rules	we	learned	in	Chapter	2,	to	build	a	simple	but	often	surprisingly
effective	classifier.

Let’s	move	now	into	the	world	of	statistics.

1.	Feras	A.	Saad,	Cameron	E.	Freer,	Martin	C.	Rinard,	and	Vikash	K.
Mansinghka,	“The	Fast	Loaded	Dice	Roller:	A	Near-Optimal	Exact	Sampler
for	Discrete	Probability	Distributions,”	in	AISTATS	2020:	Proceedings	of	the
23rd	International	Conference	on	Artificial	Intelligence	and	Statistics,
Proceedings	of	Machine	Learning	Research	108,	Palermo,	Sicily,	Italy,	2020.



4
STATISTICS

Bad	datasets	lead	to	bad	models.	We’d	like	to	understand	our	data	before	we
build	a	model,	and	then	use	that	understanding	to	create	a	useful	dataset,	one	that
leads	to	models	that	do	what	we	expect	them	to	do.	Knowing	basic	statistics	will
enable	us	to	do	just	that.

A	statistic	is	any	number	that’s	calculated	from	a	sample	and	used	to
characterize	it	in	some	way.	In	deep	learning,	when	we	talk	about	samples,	we’re
usually	talking	about	datasets.	Maybe	the	most	basic	statistic	is	the	arithmetic
mean,	commonly	known	as	the	average.	The	mean	of	a	dataset	is	a	single-
number	summary	of	the	dataset.

We’ll	see	many	different	statistics	in	this	chapter.	We’ll	begin	by	learning
about	the	types	of	data	and	characterizing	a	dataset	with	summary	statistics.
Next,	we’ll	learn	about	quantiles	and	plotting	data	to	understand	what	it
contains.	After	that	comes	a	discussion	of	outliers	and	missing	data.	Datasets	are
seldom	perfect,	so	we	need	to	have	some	way	of	detecting	bad	data	and	dealing
with	missing	data.	We’ll	follow	our	discussion	of	imperfect	datasets	with	a
discussion	of	the	correlation	between	variables.	Then	we’ll	close	the	chapter	out
by	discussing	hypothesis	testing,	where	we	attempt	to	answer	questions	like
“How	likely	is	it	that	the	same	parent	process	generated	two	datasets?”
Hypothesis	testing	is	widely	used	in	science,	including	deep	learning.

Types	of	Data
The	four	types	of	data	are	nominal,	ordinal,	interval,	and	ratio.	Let’s	look	at	each
in	turn.



in	turn.

Nominal	Data
Nominal	data,	sometimes	called	categorical	data,	is	data	that	has	no	ordering
between	the	different	values.	An	example	of	this	is	eye	color;	there	is	no
relationship	between	brown,	blue,	and	green.

Ordinal	Data
For	ordinal	data,	the	data	has	a	ranking	or	order,	though	differences	aren’t
meaningful	in	a	mathematical	sense.	For	example,	if	a	questionnaire	asks	you	to
select	from	“strongly	disagree,”	“disagree,”	“neutral,”	“agree,”	and	“strongly
agree,”	it’s	pretty	clear	that	there	is	an	order.	Still,	it’s	also	clear	that	“agree”
isn’t	three	more	than	“strongly	disagree.”	All	we	can	say	is	that	“strongly
disagree”	is	to	the	left	of	“agree”	(and	“neutral”	and	“disagree”).

Another	example	of	ordinal	data	is	education	level.	If	one	person	has	a
fourth-grade	education	and	another	has	an	eighth-grade	education,	we	can	say
that	the	latter	person	is	more	educated	than	the	former,	but	we	can’t	say	that	the
latter	person	is	twice	as	educated,	because	“twice	as	educated”	has	no	fixed
meaning.

Interval	Data
Interval	data	has	meaningful	differences.	For	example,	if	one	cup	of	water	is	at
40	degrees	Fahrenheit	and	another	is	at	80	degrees	Fahrenheit,	we	can	say	that
there	is	a	40-degree	difference	between	the	two	cups	of	water.	We	can’t,
however,	say	that	there	is	twice	as	much	heat	in	the	second	cup,	because	the	zero
for	the	Fahrenheit	scale	is	arbitrary.	Colloquially,	we	do	say	it’s	twice	as	hot,	but
in	reality,	it	isn’t.	To	see	this,	think	about	what	happens	if	we	change	the
temperature	scale	to	another	scale	with	an	arbitrary,	though	more	sensible,	zero:
the	Celsius	scale.	We	see	that	the	first	cup	is	at	about	4.4	degrees	Celsius,	and
the	second	is	at	26.7	degrees	Celsius.	Clearly,	the	second	cup	doesn’t	suddenly
now	have	six	times	the	heat	of	the	first.

Ratio	Data
Finally,	ratio	data	is	data	where	differences	are	meaningful,	and	there	is	a	true
zero	point.	Height	is	a	ratio	value	because	a	height	of	zero	is	just	that—no	height
at	all.	Similarly,	age	is	also	a	ratio	value	because	an	age	of	zero	means	no	age	at
all.	If	we	were	to	adopt	a	new	age	scale	and	call	a	person	zero	when	they	reach,



say,	voting	age,	we’d	then	have	an	interval	scale,	not	a	ratio	scale.
Let’s	look	at	temperature	again.	We	said	above	that	temperature	is	an

interval	quantity.	This	isn’t	always	the	case.	If	we	measure	temperature	in
Fahrenheit	or	Celsius,	then,	yes,	it	is	an	interval	quantity.	However,	if	we
measure	temperature	in	Kelvin,	the	absolute	temperature	scale,	then	it	becomes	a
ratio	value.	Why?	Because	a	temperature	of	0	Kelvin	(or	K)	is	just	that,	no
temperature	at	all.	If	our	first	cup	is	at	40°F,	277.59	K,	and	the	second	is	at	80°F,
299.82	K,	then	we	can	truthfully	say	that	the	second	cup	is	1.08	times	hotter	than
the	first,	since	(277.59)(1.08)	≈	299.8.

Figure	4-1	names	the	scales	and	shows	their	relationships	to	each	other.

Figure	4-1:	The	four	types	of	data

Each	step	in	Figure	4-1	from	left	to	right	adds	something	to	the	data	that	the
type	of	data	on	the	left	is	lacking.	For	nominal	to	ordinal,	we	add	ordering.	For
ordinal	to	interval,	we	add	meaningful	differences.	Lastly,	moving	from	interval
to	ratio	adds	a	true	zero	point.

In	practical	use,	as	far	as	statistics	are	concerned,	we	should	be	aware	of	the
types	of	data	so	we	don’t	do	something	meaningless.	If	we	have	a	questionnaire,
and	the	mean	value	of	question	A	on	a	1-to-5	rating	scale	is	2,	while	for	question
B	it’s	4,	we	can’t	say	that	B	is	rated	twice	as	high	as	A,	only	that	B	was	rated
higher	than	A.	What	“twice”	means	in	this	context	is	unclear	and	quite	probably
meaningless.

Interval	and	ratio	data	may	be	continuous	(floating-points)	or	discrete
(integers).	From	a	deep	learning	perspective,	models	typically	treat	continuous
and	discrete	data	the	same	way,	and	we	don’t	need	to	do	anything	special	for
discrete	data.

Using	Nominal	Data	in	Deep	Learning



If	we	have	a	nominal	value,	say	a	set	of	colors,	such	as	red,	green,	and	blue,	and
we	want	to	pass	that	value	into	a	deep	network,	we	need	to	change	the	data
before	we	can	use	it.	As	we	just	saw,	nominal	data	has	no	order,	so	while	it’s
tempting	to	assign	a	value	of	1	to	red,	2	to	green,	and	3	to	blue,	it	would	be
wrong	to	do	so,	since	the	network	will	interpret	those	numbers	as	interval	data.
In	that	case,	to	the	network,	blue	=	3(red),	which	is	of	course	nonsense.	If	we
want	to	use	nominal	data	with	a	deep	network,	we	need	to	alter	it	so	that	the
interval	is	meaningful.	We	do	this	with	one-hot	encoding.

In	one-hot	encoding,	we	turn	the	single	nominal	variable	into	a	vector,	where
each	element	of	the	vector	corresponds	to	one	of	the	nominal	values.	For	the
color	example,	the	one	nominal	variable	becomes	a	three-element	vector	with
one	element	representing	red,	another	green,	and	the	last	blue.	Then,	we	set	the
value	corresponding	to	the	color	to	one	and	all	the	others	to	zero,	like	so:

Value Vector
red → 1	0	0
green → 0	1	0
blue → 0	0	1

Now	the	vector	values	are	meaningful	because	either	it’s	red	(1)	or	it’s	not	(0),
green	(1)	or	it’s	not	(0),	or	blue	(1)	or	it’s	not	(0).	The	interval	between	zero	and
one	has	mathematical	meaning	because	the	presence	of	the	value,	say	red,	is
genuinely	greater	than	its	absence,	and	that	works	the	same	way	for	each	color.
The	values	are	now	interval,	so	the	network	can	use	them.	In	some	toolkits,	like
Keras,	class	labels	are	one-hot	encoded	before	passing	them	to	the	model.	This	is
done	so	vector	output	operates	nicely	with	the	one-hot	encoded	class	label	when
computing	the	loss	function.

Summary	Statistics
We’re	given	a	dataset.	How	do	we	make	sense	of	it?	How	should	we
characterize	it	to	understand	it	better	before	we	use	it	to	build	a	model?

To	answer	these	questions,	we	need	to	learn	about	summary	statistics.
Calculating	summary	statistics	should	be	the	first	thing	you	do	when	handed	a
new	dataset.	Not	looking	at	your	dataset	before	building	a	model	is	like	buying	a
used	car	without	checking	the	tires,	taking	it	for	a	test	drive,	and	looking	under
the	hood.



People	have	different	notions	of	what	makes	a	good	set	of	summary
statistics.	We’ll	focus	on	the	following:	means;	the	median;	and	measures	of
variation,	including	variance,	standard	deviation,	and	standard	error.	The	range
and	mode	are	also	often	mentioned.	The	range	is	the	difference	between	the
maximum	and	minimum	of	the	dataset.	The	mode	is	the	most	frequent	value	in
the	dataset.	We	generally	get	a	sense	of	the	mode	visually	from	the	histogram,	as
the	histogram	shows	us	the	shape	of	the	distribution	of	the	data.

Means	and	Median
Most	of	us	learned	how	to	calculate	the	average	of	a	set	of	numbers	in
elementary	school:	add	the	numbers	and	divide	by	how	many	there	are.	This	is
the	arithmetic	mean,	or,	more	specifically,	the	unweighted	arithmetic	mean.	If
the	dataset	consists	of	a	set	of	values,	{x0,	x1,	x2,	.	.	.	,	xn–1},	then	the	arithmetic
mean	is	the	sum	of	the	data	divided	by	the	number	of	elements	in	the	dataset	(n).
Notationally,	we	write	this	as	the	following.

The	 	is	the	typical	way	to	denote	the	mean	of	a	sample.
Equation	4.1	calculates	the	unweighted	mean.	Each	value	is	given	a	weight

of	1/n,	where	the	sum	of	all	the	weights	is	1.0.	Sometimes,	we	might	want	to
weight	elements	of	the	dataset	differently;	in	other	words,	not	all	of	them	should
count	equally.	In	that	case,	we	calculate	a	weighted	mean,

where	wi	is	the	weight	given	to	xi	and	Σiwi	=	1.	The	weights	are	not	part	of
the	dataset;	they	need	to	come	from	somewhere	else.	The	grade	point	average
(GPA)	used	by	many	universities	is	an	example	of	a	weighted	mean.	The	grade
for	each	course	is	multiplied	by	the	number	of	course	credits,	and	the	sum	is
divided	by	the	total	number	of	credits.	Algebraically,	this	is	equivalent	to
multiplying	each	grade	by	a	weight,	wi	=	ci/Σici,	with	ci	the	number	of	credits	for
course	i	and	Σici	the	total	number	of	credits	for	the	semester.

Geometric	Mean



The	arithmetic	mean	is	by	far	the	most	commonly	used	mean.	However,	there
are	others.	The	geometric	mean	of	two	positive	numbers,	a	and	b,	is	the	square
root	of	their	product:

In	general,	the	geometric	mean	of	n	positive	numbers	is	the	nth	root	of	their
product:

The	geometric	mean	is	used	in	finance	to	calculate	average	growth	rates.	In
image	processing,	the	geometric	mean	can	be	used	as	a	filter	to	help	reduce
image	noise.	In	deep	learning,	the	geometric	mean	appears	in	the	Matthews
correlation	coefficient	(MCC),	one	of	the	metrics	we	use	to	evaluate	deep
learning	models.	The	MCC	is	the	geometric	mean	of	two	other	metrics,	the
informedness	and	the	markedness.

Harmonic	Mean
The	harmonic	mean	of	two	numbers,	a	and	b,	is	the	reciprocal	of	the	arithmetic
mean	of	their	reciprocals:

In	general,

The	harmonic	mean	shows	up	in	deep	learning	as	the	F1	score.	This	is	a
frequently	used	metric	for	evaluating	classifiers.	The	F1	score	is	the	harmonic
mean	of	the	recall	(sensitivity)	and	the	precision:



Despite	its	frequent	use,	it’s	not	a	good	idea	to	use	the	F1	score	to	evaluate	a
deep	learning	model.	To	see	this,	consider	the	definitions	of	recall	and	precision:

Here,	TP	is	the	number	of	true	positives,	FN	is	the	number	of	false	negatives,
and	FP	is	the	number	of	false	positives.	These	values	come	from	the	test	set	used
to	evaluate	the	model.	A	fourth	number	that’s	important	for	classifiers,	TN,	is
the	number	of	correctly	classified	true	negatives	(assuming	a	binary	classifier).
The	F1	score	ignores	TN,	but	to	understand	how	well	the	model	performs,	we
need	to	consider	both	positive	and	negative	classifications.	Therefore,	the	F1
score	is	misleading	and	often	too	optimistic.	Better	metrics	are	the	MCC
mentioned	above	or	Cohen’s	κ	(kappa),	which	is	similar	to	MCC	and	usually
tracks	it	closely.

Median
Before	moving	on	to	measures	of	variation,	there’s	one	more	commonly	used
summary	statistic	we’ll	mention	here.	It’ll	show	up	again	a	little	later	in	the
chapter	too.	The	median	of	a	dataset	is	the	middle	value.	It’s	the	value	where,
when	the	dataset	is	sorted	numerically,	half	the	values	are	below	it	and	half	are
above	it.	Let’s	use	this	dataset:

X	=	{55,63,65,37,74,71,73,87,69,44}

If	we	sort	X,	we	get

{37,	44,	55,	63,	65,	69,	71,	73,	74,	87}



We	immediately	see	a	potential	problem.	I	said	we	need	the	middle	value	when
the	data	is	sorted.	With	10	things	in	X,	there	is	no	middle	value.	The	middle	lies
between	65	and	69.	When	the	number	of	elements	in	the	data-set	is	even,	the
median	is	the	arithmetic	mean	of	the	two	middle	numbers.	Therefore,	the	median
in	this	case	is

The	arithmetic	mean	of	the	data	is	63.8.	What’s	the	difference	between	the
mean	and	the	median?

By	design,	the	median	tells	us	the	value	that	splits	the	dataset,	so	the	number
of	samples	above	equals	the	number	below.	It’s	the	number	of	samples	that
matters.	For	the	mean,	it’s	a	sum	over	the	actual	data	values.	Therefore,	the
mean	is	sensitive	to	the	values	themselves,	while	the	median	is	sensitive	to	the
ordering	of	the	values.

If	we	look	at	X,	we	see	that	most	values	are	in	the	60s	and	70s,	with	one	low
value	of	37.	It’s	the	low	value	of	37	that	drags	the	mean	down	relative	to	the
median.	An	excellent	example	of	this	effect	is	income.	The	current	median
annual	family	income	in	the	United	States	is	about	$62,000.	A	recent	measure	of
the	mean	family	income	in	the	United	States	is	closer	to	$72,000.	The	difference
is	because	of	the	small	portion	of	the	population	who	make	significantly	more
money	than	everyone	else.	They	pull	the	overall	mean	up.	For	income,	then,	the
most	meaningful	statistic	is	the	median.

Consider	Figure	4-2.



Figure	4-2:	The	mean	(solid)	and	median	(dashed)	plotted	over	the	histogram	of	a	sample	dataset

Figure	4-2	shows	the	histogram	generated	from	1,000	samples	of	a	simulated
dataset.	Also	plotted	are	the	mean	(solid	line)	and	median	(dashed	line).	The	two
do	not	match;	the	long	tail	in	the	histogram	drags	the	mean	up.	If	we	were	to
count,	500	samples	would	fall	in	the	bins	below	the	dashed	line	and	500	in	the
bins	above.

Are	there	times	when	the	mean	and	median	are	the	same?	Yes.	If	the	data
distribution	is	completely	symmetric,	then	the	mean	and	median	will	be	the
same.	The	classic	example	of	this	situation	is	the	normal	distribution.	Figure	3-4
showed	a	normal	distribution	where	the	left-right	symmetry	was	clear.	The
normal	distribution	is	special.	We’ll	see	it	again	throughout	the	chapter.	For
now,	remember	that	the	closer	the	distribution	of	the	dataset	is	to	a	normal
distribution,	the	closer	the	mean	and	median	will	be.

The	opposite	is	also	worth	remembering:	if	the	dataset’s	distribution	is	far
from	normal,	like	in	Figure	4-2,	then	the	median	is	likely	the	better	statistic	to



consider	when	summarizing	the	data.

Measures	of	Variation
A	beginning	archer	shoots	10	arrows	at	a	target.	Eight	of	the	beginner’s	arrows
hit	the	target,	two	miss	completely,	and	the	eight	that	do	hit	the	target	are	spread
uniformly	across	it.	An	expert	archer	shoots	10	arrows	at	a	target.	All	of	the
expert’s	arrows	hit	within	a	few	centimeters	of	the	center.	Think	about	the	mean
position	of	the	arrows.	For	the	expert,	all	of	the	arrows	are	near	the	center	of	the
target,	so	we	can	see	that	the	mean	position	of	the	arrows	will	be	near	the	center.
For	the	beginner,	none	of	the	arrows	are	near	the	center	of	the	target,	but	they	are
scattered	more	or	less	equally	to	the	left	and	right	or	above	and	below	the	center.
Because	of	this,	the	average	position	will	balance	out	and	be	near	the	center	of
the	target	as	well.

However,	the	first	archer’s	arrows	are	scattered;	their	location	varies	greatly.
The	second	archer’s	arrows,	on	the	other	hand,	are	tightly	clustered,	and	there	is
little	variation	in	their	position.	One	meaningful	way	to	summarize	and
understand	a	dataset	is	to	quantify	its	variation.	Let’s	see	how	we	might	do	this.

Deviation	vs.	Variance
One	way	we	might	measure	the	variation	of	a	dataset	is	to	find	the	range,	the
difference	between	the	largest	and	smallest	values.	However,	the	range	is	a	crude
measurement,	as	it	pays	no	attention	to	most	of	the	values	in	the	dataset,	only	the
extremes.	We	can	do	better	by	calculating	the	mean	of	the	difference	between
the	data	values	and	the	mean	of	the	data.	The	formula	is

Equation	4.2	is	the	mean	deviation.	It’s	a	natural	measure	and	gives	just	what
we	want:	an	idea	of	how	far,	on	average,	each	sample	is	from	the	mean.	While
there’s	nothing	wrong	with	calculating	the	mean	deviation,	you’ll	find	that	it’s
rarely	used	in	practice.	One	reason	has	to	do	with	algebra	and	calculus.	The
absolute	value	is	annoying	to	deal	with	mathematically.

Instead	of	the	natural	measure	of	variation,	let’s	calculate	this	one	using
squared	differences:



Equation	4.3	is	known	as	the	biased	sample	variance.	It’s	the	mean	of	the
squared	difference	between	each	value	in	the	dataset	and	the	mean.	It’s	an
alternate	way	of	characterizing	the	scatter	in	the	dataset.	Why	it’s	biased,	we’ll
discuss	in	a	second.	We’ll	get	into	why	it’s	 	and	not	sn	shortly	after	that.

Before	we	do,	it’s	worth	noting	that	you’ll	often	see	a	slightly	different
equation:

This	equation	is	the	unbiased	sample	variance.	Using	n	–	1	in	place	of	n	is
known	as	Bessel’s	correction.	It’s	related	to	the	number	of	degrees	of	freedom	in
the	residuals,	where	the	residuals	are	what’s	left	when	the	mean	is	subtracted
from	each	of	the	values	in	the	dataset.	The	sum	of	the	residuals	is	zero,	so	if
there	are	n	values	in	the	dataset,	knowing	n	–	1	of	the	residuals	allows	the	last
residual	to	be	calculated.	This	gives	us	the	degrees	of	freedom	for	the	residuals.
We	are	“free”	to	calculate	n	–	1	of	them	knowing	that	we’ll	get	the	last	one	from
the	fact	that	the	residuals	sum	to	zero.	Dividing	by	n–1	gives	a	less	biased
estimate	of	the	variance,	assuming	 	is	biased	in	some	way	to	begin	with.

Why	are	we	talking	about	biased	variance	and	unbiased	variance?	Biased
how?	We	should	always	remember	that	a	dataset	is	a	sample	from	some	parent
data-generating	process,	the	population.	The	true	population	variance	(σ2)	is	the
scatter	of	the	population	around	the	true	population	mean	(μ).	However,	we
don’t	know	μ	or	σ2,	so	instead,	we	estimate	them	from	the	dataset	we	do	have.
The	mean	of	the	sample	is	 .	That’s	our	estimate	for	μ.	It’s	then	natural	to
calculate	the	mean	of	the	squared	deviations	around	 	and	call	that	our	estimate
for	σ2.	That’s	 	(Equation	4.3).	The	claim,	which	is	true	but	beyond	our	scope
to	demonstrate,	is	that	 	is	biased	and	not	the	best	estimate	of	σ2,	but	if	Bessel’s
correction	is	applied,	we’ll	have	a	better	estimate	of	the	population	variance.	So
we	should	use	s2	(Equation	4.4)	to	characterize	the	variance	of	the	dataset
around	the	mean.

In	summary,	we	should	use	 	and	s2	to	quantify	the	variance	of	the	data-set.
Now,	why	is	it	s2?	The	square	root	of	the	variance	is	the	standard	deviation
denoted	as	σ	for	the	population	and	s	for	the	estimate	of	σ	calculated	from	the



dataset.	Most	often,	we	want	to	work	with	the	standard	deviation.	Writing	square
roots	becomes	tiresome,	so	convention	has	adopted	the	σ	or	s	notation	for	the
standard	deviation	and	uses	the	squared	form	when	discussing	the	variance.

And,	because	life	isn’t	already	ambiguous	enough,	you’ll	often	see	σ	used
for	s,	and	Equation	4.3	used	when	it	really	should	be	Equation	4.4.	Some
toolkits,	including	our	beloved	NumPy,	make	it	easy	to	use	the	wrong	formula.

However,	as	the	number	of	samples	in	our	dataset	increases,	the	difference
between	the	biased	and	unbiased	variance	decreases	because	dividing	by	n	or	n	–
1	matters	less	and	less.	A	few	lines	of	code	illustrate	this:

>>>	import	numpy	as	np
>>>	n	=	10
>>>	a	=	np.random.random(n)
>>>	(1/n)*((a-a.mean())**2).sum()
0.08081748204006689
>>>	(1/(n-1))*((a-a.mean())**2).sum()
0.08979720226674098

Here,	a	sample	with	only	10	values	(a)	shows	a	difference	in	the	biased	and
unbiased	variance	in	the	third	decimal.	If	we	increase	our	dataset	size	from	10	to
10,000,	we	get

>>>	n	=	10000
>>>	a	=	np.random.random(n)
>>>	(1/n)*((a-a.mean())**2).sum()
0.08304350577482553
>>>	(1/(n-1))*((a-a.mean())**2).sum()
0.08305181095592111

The	difference	between	the	biased	and	unbiased	estimate	of	the	variance	is	now
in	the	fifth	decimal.	Therefore,	for	the	large	datasets	we	typically	work	with	in
deep	learning,	it	matters	little	in	practice	whether	we	use	sn	or	s	for	the	standard
deviation.

MEDIAN	ABSOLUTE	DEVIATION

The	standard	deviation	is	based	on	the	mean.	The	mean,	as	we	saw	above,
is	sensitive	to	extreme	values,	and	the	standard	deviation	is	doubly	so
because	we	square	the	deviation	from	the	mean	for	each	sample.	A
measure	of	variability	that	is	insensitive	to	extreme	values	in	the	dataset	is



the	median	absolute	deviation	(MAD).	The	MAD	is	defined	as	the	median
of	the	absolute	values	of	the	difference	between	the	data	and	the	median:

MAD	=	median(|Xi	–	median(X)|)

Procedurally,	first	calculate	the	median	of	the	data,	then	subtract	it	from
each	data	value,	making	the	result	positive,	and	report	the	median	of	that
set.	The	implementation	is	straightforward:

def	MAD(x):
				return	np.median(np.abs(x-np.median(x)))

The	MAD	is	not	often	used,	but	its	insensitivity	to	extreme	values	in	the
dataset	argues	toward	more	frequent	use,	especially	for	outlier	detection.

Standard	Error	vs.	Standard	Deviation
We	have	one	more	measure	of	variance	to	discuss:	the	standard	error	of	the
mean	(SEM).	The	SEM	is	often	simply	called	the	standard	error	(SE).	We	need
to	go	back	to	the	population	to	understand	what	the	SE	is	and	when	to	use	it.	If
we	select	a	sample	from	the	population,	a	dataset,	we	can	calculate	the	mean	of
the	sample,	 .	If	we	choose	repeated	samples	and	calculate	those	sample	means,
we’ll	generate	a	dataset	of	means	of	the	samples	from	the	population.	This	might
sound	familiar;	it’s	the	process	we	used	to	illustrate	the	central	limit	theorem	in
Chapter	3.	The	standard	deviation	of	the	set	of	means	is	the	standard	error.

The	formula	for	the	standard	error	from	the	standard	deviation	is
straightforward,

and	is	nothing	more	than	a	scaling	of	the	sample	standard	deviation	by	the
square	root	of	the	number	of	samples.

When	should	we	use	the	standard	deviation,	and	when	should	we	use	the
standard	error?	Use	the	standard	deviation	to	learn	about	the	distribution	of	the
samples	around	the	mean.	Use	the	standard	error	to	say	something	about	how
good	an	estimate	of	the	population	mean	a	sample	mean	is.	In	a	sense,	the
standard	error	is	related	to	both	the	central	limit	theorem,	as	that	affects	the
standard	deviation	of	the	means	of	multiple	samples	from	the	parent	population,
and	the	law	of	large	numbers,	since	a	larger	dataset	is	more	likely	to	give	a	better



and	the	law	of	large	numbers,	since	a	larger	dataset	is	more	likely	to	give	a	better
estimate	of	the	population	mean.

From	a	deep	learning	point	of	view,	we	might	use	the	standard	deviation	to
describe	the	dataset	used	to	train	a	model.	If	we	train	and	test	several	models,
remembering	the	stochastic	nature	of	deep	network	initialization,	we	can
calculate	a	mean	over	the	models	for	some	metric,	say	the	accuracy.	In	that	case,
we	might	want	to	report	the	mean	accuracy	plus	or	minus	the	standard	error.	As
we	train	more	models	and	gain	confidence	that	the	mean	accuracy	represents	the
sort	of	accuracy	the	model	architecture	can	provide,	we	should	expect	that	the
error	in	the	mean	accuracy	over	the	models	will	decrease.

To	recap,	in	this	section,	we	discussed	different	summary	statistics,	values
we	can	use	to	start	to	understand	a	dataset.	These	include	the	various	means
(arithmetic,	geometric,	and	harmonic),	the	median,	the	standard	deviation,	and,
when	appropriate,	the	standard	error.	For	now,	let’s	see	how	we	can	use	plots	to
help	understand	a	dataset.

Quantiles	and	Box	Plots
To	calculate	the	median,	we	need	to	find	the	middle	value,	the	number	splitting
the	dataset	into	two	halves.	Mathematically,	we	say	that	the	median	divides	the
dataset	into	two	quantiles.

A	quantile	splits	the	dataset	into	fixed-sized	groups	where	the	fixed	size	is
the	number	of	data	values	in	the	quantile.	Since	the	median	splits	the	dataset	into
two	equally	sized	groups,	it’s	a	2-quantile.	Sometimes	you’ll	see	the	median
referred	to	as	the	50th	percentile,	meaning	50	percent	of	the	data	values	are	less
than	this	value.	By	similar	reasoning,	then,	the	95th	percentile	is	the	value	that
95	percent	of	the	dataset	is	less	than.	Researchers	often	calculate	4-quantiles	and
refer	to	them	as	quartiles,	since	they	split	the	dataset	into	four	groups	such	that
25	percent	of	the	data	values	are	in	the	first	quartile,	50	percent	are	in	the	first
and	second,	and	75	percent	are	in	the	first,	second,	and	third,	with	the	final	25
percent	in	the	fourth	quartile.

Let’s	work	through	an	example	to	understand	what	we	mean	by	quantiles.
The	example	uses	a	synthetic	exam	dataset	representing	1,000	test	scores.	See
the	file	exams.npy.	We’ll	use	NumPy	to	calculate	the	quartile	values	for	us	and
then	plot	a	histogram	of	the	dataset	with	the	quartile	values	marked.	First,	let’s
calculate	the	quartile	positions:

d	=	np.load("exams.npy")
p	=	d[:,0].astype("uint32")



q	=	np.quantile(p,	[0.0,	0.25,	0.5,	0.75,	1.0])

print("Quartiles:	",	q)
print("Counts	by	quartile:")
print("				%d"	%	((q[0]	<=	p)	&	(p	<	q[1])).sum())
print("				%d"	%	((q[1]	<=	p)	&	(p	<	q[2])).sum())
print("				%d"	%	((q[2]	<=	p)	&	(p	<	q[3])).sum())
print("				%d"	%	((q[3]	<=	p)	&	(p	<	q[4])).sum())

This	code,	along	with	code	to	generate	the	plot,	is	in	the	file	quantiles.py.
First	we	load	the	synthetic	exam	data	and	keep	the	first	exam	scores	(p).

Note,	we	make	p	an	integer	array	so	we	can	use	np.bincount	later	to	make	the
histogram.	(That	code	is	not	shown	above.)	We	then	use	NumPy’s	np.quantile
function	to	calculate	the	quartile	values.	This	function	takes	the	source	array	and
an	array	of	quantile	values	in	the	range	[0,	1].	The	values	are	fractions	of	the
distance	from	the	minimum	value	of	the	array	to	its	maximum.	So,	asking	for	the
0.5	quantile	is	asking	for	the	value	that	is	half	the	distance	between	the	minimum
of	p	and	its	maximum	such	that	the	number	of	values	in	each	set	is	equal.

To	get	quartiles,	we	ask	for	the	0.25,	0.5,	and	0.75	quantiles	to	get	the	values
such	that	25	percent,	50	percent,	and	75	percent	of	the	elements	of	p	are	less	than
the	values.	We	also	ask	for	the	0.0	and	1.0	quantiles,	the	minimum	and
maximum	of	p.	We	do	this	for	convenience	when	we	count	the	number	of
elements	in	each	range.	Note,	we	could	have	instead	used	the	np.percentile	function.
It	returns	the	same	values	as	np.quantile	but	uses	percentage	values	instead	of
fractions.	In	that	case,	the	second	argument	would	have	been	[0,25,50,75,100].

The	returned	quartile	values	are	in	q.	We	print	them	to	get

18.0,	56.75,	68.0,	78.0,	100.0

Here,	18	is	the	minimum,	100	is	the	maximum,	and	the	three	cutoff	values	for
the	quartiles	are	56.75,	68,	and	78.	Note	that	the	cutoff	for	the	second	quartile	is
the	median,	68.

The	remaining	code	counts	the	number	of	values	in	p	in	each	range.	With
1,000	values,	we’d	expect	to	have	250	in	each	range,	but	because	the	math
doesn’t	always	fall	along	existing	data	values,	we	get	instead

250,	237,	253,	248

meaning	250	elements	of	p	are	less	than	56.75,	237	are	in	[56.75,	68],	and	so
forth.



The	code	above	uses	a	clever	counting	trick	worth	explaining.	We	want	to
count	the	number	of	values	in	p	in	some	range.	We	can’t	use	NumPy’s	np.where
function,	as	it	doesn’t	like	the	compound	conditional	statement.	However,	if	we
use	an	expression	like	10	<=	p,	we’ll	be	given	an	array	the	same	size	as	p	where
each	element	is	either	True	if	the	condition	is	true	for	that	element	or	False	if	it	is
not.	Therefore,	asking	for	10	<=	p	and	p	<	90	will	return	two	Boolean	arrays.	To	get
the	elements	where	both	conditions	are	true,	we	need	to	logically	AND	them
together	(&).	This	gives	us	a	final	array	the	same	size	and	shape	as	p,	where	all
True	elements	represent	values	in	p	in	[10,	90).	To	get	the	count,	we	apply	the	sum
method	that	for	a	Boolean	array	treats	True	as	one	and	False	as	zero.

Figure	4-3	shows	the	histogram	of	the	exam	data	with	the	quartiles	marked.

Figure	4-3:	A	histogram	of	1,000	exam	scores	with	the	quartiles	marked



The	example	above	shows	yet	again	how	useful	a	histogram	is	for
visualizing	and	understanding	data.	We	should	use	histograms	whenever
possible	to	help	understand	what’s	going	on	with	a	dataset.	Figure	4-3
superimposes	the	quartile	values	on	the	histogram.	This	helps	us	understand
what	the	quartiles	are	and	their	relationship	to	the	data	values,	but	this	is	not	a
typical	presentation	style.	More	typical,	and	useful	because	it	can	show	multiple
features	of	a	dataset,	is	the	box	plot.	Let’s	use	it	now	for	the	exam	scores	above,
but	this	time	we’ll	also	include	the	two	other	sets	of	exam	scores	we	ignored
previously.

We’ll	show	a	box	plot	first,	and	then	explain	it.	To	see	the	box	plot	for	the
three	exams	in	the	exams.npy	file,	use

d	=	np.load("exams.npy")
plt.boxplot(d)
plt.xlabel("Test")
plt.ylabel("Scores")
plt.show()

where	we’re	loading	the	full	set	of	exam	scores	and	then	using	the	Matplotlib
boxplot	function.

Take	a	look	at	the	output,	shown	in	Figure	4-4.





Figure	4-4:	Box	plots	for	the	three	exams	(top),	and	the	box	plot	for	the	first	exam	with	the	components
marked	(bottom)

The	top	chart	in	Figure	4-4	shows	the	box	plot	for	the	three	sets	of	exam
scores	in	|exams.npy|.	The	first	of	these	is	plotted	again	on	the	bottom	of	Figure
4-4,	along	with	labels	describing	the	parts	of	the	plot.

A	box	plot	shows	us	a	visual	summary	of	the	data.	The	box	in	the	bottom
chart	in	Figure	4-4	illustrates	the	range	between	the	cutoffs	for	the	first	quartile
(Q1)	and	the	third	quartile	(Q3).	The	numerical	difference	between	Q3	and	Q1	is
known	as	the	interquartile	range	(IQR).	The	larger	the	IQR,	the	more	spread	out
the	data	is	around	the	median.	Notice	that	the	score	is	on	the	y-axis	this	time.	We
could	have	easily	made	the	plot	horizontal,	but	vertical	is	the	default.	The
median	(Q2)	is	marked	near	the	middle	of	the	box.	The	mean	is	not	shown	in	a
box	plot.

The	box	plot	includes	two	additional	lines,	the	whiskers,	though	Matplotlib
calls	them	fliers.	As	indicated,	they	are	1.5	times	the	IQR	above	Q3	or	below
Q1.	Finally,	there	are	some	circles	labeled	“possible	outliers.”	By	convention,
values	outside	of	the	whiskers	are	considered	possible	outliers,	meaning	they
might	represent	erroneous	data,	either	entered	incorrectly	by	hand	or,	more
likely	these	days,	received	from	faulty	sensors.	For	example,	bright	or	dead
pixels	on	a	CCD	camera	might	be	considered	outliers.	When	evaluating	a
potential	dataset,	we	should	be	sensitive	to	outliers	and	use	our	best	judgment
about	what	to	do	with	them.	Usually,	there	are	only	a	few,	and	we	can	drop	the
samples	from	the	dataset	without	harm.	However,	it’s	also	possible	that	the
outliers	are	actually	real	and	are	highly	indicative	of	a	particular	class.	If	that’s
the	case,	we	want	to	keep	them	in	the	dataset	in	the	hopes	that	the	model	will	use
them	effectively.	Experience,	intuition,	and	common	sense	must	guide	us	here.

Let’s	interpret	the	top	chart	in	Figure	4-4	showing	the	three	sets	of	exam
scores.	The	top	of	the	whiskers	is	at	100	each	time,	which	makes	sense:	a	100	is
a	perfect	score,	and	there	were	100s	in	the	dataset.	Notice	that	the	box	portion	of
the	plot	is	not	centered	vertically	in	the	whiskers.	Recalling	that	50	percent	of
the	data	values	are	between	Q1	and	Q3,	with	25	percent	above	and	below	Q2	in
the	box,	we	see	that	the	data	is	not	rigorously	normal;	its	distribution	deviates
from	a	normal	curve.	A	glance	back	to	the	histogram	in	Figure	4-3	confirms	this
for	the	first	exam.	Similarly,	we	see	the	second	and	third	exams	deviate	from
normality	as	well.	So,	a	box	plot	can	tell	us	how	similar	the	distribution	of	the
dataset	is	to	a	normal	distribution.	When	we	discuss	hypothesis	testing	below,
we’ll	want	to	know	if	the	data	is	normally	distributed	or	not.

What	about	possible	outliers,	the	values	below	Q1	–	1.5	×	IQR?	We	know
the	dataset	represents	test	scores,	so	common	sense	tells	us	that	these	are	not



the	dataset	represents	test	scores,	so	common	sense	tells	us	that	these	are	not
outliers	but	valid	scores	by	particularly	confused	(or	lazy)	students.	If	the	dataset
contained	values	above	100	or	below	zero,	those	would	be	fair	game	to	label
outliers.

Sometimes	dropping	samples	with	outliers	is	the	right	thing	to	do.	However,
if	the	outlier	is	caused	by	missing	data,	cutting	the	sample	might	not	be	an
option.	Let’s	take	a	look	at	what	we	might	do	with	missing	data,	and	why	we
should	generally	avoid	it	like	the	plague.

Missing	Data
Missing	data	is	just	that,	data	we	don’t	have.	If	the	dataset	consists	of	samples
representing	feature	vectors,	missing	data	shows	up	as	one	or	more	features	in	a
sample	that	were	not	measured	for	some	reason.	Often,	missing	data	is	encoded
in	some	way.	If	the	value	is	only	positive,	a	missing	feature	might	be	marked
with	a	–1	or,	historically,	–999.	If	the	feature	is	given	to	us	as	a	string,	the	string
might	be	empty.	For	floating-point	values,	a	not	a	number	(NaN)	might	be	used.
NumPy	makes	it	easy	for	us	to	check	for	NaNs	in	an	array	by	using	np.isnan:

>>>	a	=	np.arange(10,	dtype="float64")
>>>	a[3]	=	np.nan
>>>	np.isnan(a[3])
True
>>>	a[3]	==	np.nan
False
>>>	a[3]	is	np.nan
False

Notice	that	direct	comparison	to	np.nan	with	either	==	or	is	doesn’t	work;	only
testing	with	np.isnan	works.

Detecting	missing	data	is	dataset-specific.	Assuming	we’ve	convinced
ourselves	there	is	missing	data,	how	do	we	handle	it?

Let’s	generate	a	small	dataset	with	missing	values	and	use	our	existing
statistics	knowledge	to	see	how	to	handle	them.	The	code	for	the	following	is	in
missing.py.	First,	we	generate	a	dataset	of	1,000	samples,	each	with	four	features:

N	=	1000
np.random.seed(73939133)
x	=	np.zeros((N,4))
x[:,0]	=	5*np.random.random(N)
x[:,1]	=	np.random.normal(10,1,size=N)
x[:,2]	=	3*np.random.beta(5,2,N)



x[:,2]	=	3*np.random.beta(5,2,N)
x[:,3]	=	0.3*np.random.lognormal(size=N)

The	dataset	is	in	x.	We	fix	the	random	number	seed	to	get	a	reproducible	result.
The	first	feature	is	uniformly	distributed.	The	second	is	normally	distributed,
while	the	third	follows	a	beta	distribution	and	the	fourth	a	lognormal
distribution.

At	the	moment,	x	has	no	missing	values.	Let’s	add	some	by	making	random
elements	NaNs:

i	=	np.random.randint(0,N,	size=int(0.05*N))
x[i,0]	=	np.nan
i	=	np.random.randint(0,N,	size=int(0.05*N))
x[i,1]	=	np.nan
i	=	np.random.randint(0,N,	size=int(0.05*N))
x[i,2]	=	np.nan
i	=	np.random.randint(0,N,	size=int(0.05*N))
x[i,3]	=	np.nan

The	dataset	now	has	NaNs	across	5	percent	of	its	values.
If	a	few	samples	in	a	large	dataset	have	missing	data,	we	can	remove	them

from	the	dataset	with	little	worry.	However,	if	5	percent	of	the	samples	have
missing	data,	we	probably	don’t	want	to	lose	that	much	data.	More	worrisome
still,	what	if	there’s	a	correlation	between	the	missing	data	and	a	particular	class?
Throwing	the	samples	away	might	bias	the	dataset	in	some	way	that’ll	make	the
model	less	useful.

So,	what	can	we	do?	We	just	spent	many	pages	learning	how	to	summarize	a
dataset	with	basic	descriptive	statistics.	Can	we	use	those?	Of	course.	We	can
look	at	the	distributions	of	the	features,	ignoring	the	missing	values,	and	use
those	distributions	to	decide	how	we	might	want	to	replace	the	missing	data.
Naively,	we’d	use	the	mean	of	the	data	we	do	have,	but	looking	at	the
distribution	may	or	may	not	push	us	toward	the	median	instead,	depending	on
how	far	the	distribution	is	from	normal.	This	sounds	like	a	job	for	a	box	plot.
Fortunately	for	us,	Matplotlib’s	boxplot	function	is	smart;	it	ignores	the	NaNs.
Therefore,	making	the	box	plot	is	a	straightforward	call	to	boxplot(x).

Figure	4-5	shows	us	the	dataset	with	the	NaNs	ignored.



Figure	4-5:	Box	plot	of	the	dataset	ignoring	missing	values

The	boxes	in	Figure	4-5	make	sense	for	the	distributions	of	the	features.
Feature	1	is	uniformly	distributed,	so	we	expect	a	symmetric	box	around	the
mean/median.	(These	are	the	same	for	the	uniform	distribution.)	Feature	2	is
normally	distributed,	so	we	get	a	similar	box	structure	as	Feature	1,	but,	with
only	1,000	samples,	some	asymmetry	is	evident.	The	beta	distribution	of	Feature
3	is	skewed	toward	the	top	of	its	range,	which	we	see	in	the	box	plot.	Finally,	the
lognormal	distribution	of	Feature	4	should	be	skewed	toward	lower	values,	with
a	long	tail	visible	as	the	many	“outliers”	above	the	whiskers,	an	object	lesson
against	mindlessly	calling	such	values	outliers.

Because	we	have	features	that	are	highly	not	normally	distributed,	we’ll
update	missing	values	with	the	median	instead	of	the	mean.	The	code	is
straightforward:

good_idx	=	np.where(np.isnan(x[:,0])	==	False)
m	=	np.median(x[good_idx,0])
bad_idx	=	np.where(np.isnan(x[:,0])	==	True)
x[bad_idx,0]	=	m



x[bad_idx,0]	=	m

Here,	i	first	holds	the	indices	of	Feature	1	that	are	not	NaNs.	We	use	these	to
calculate	the	median	(m).	Next,	we	set	i	to	the	indices	that	are	NaNs	and	replace
them	with	the	median.	We	can	do	the	same	for	the	other	features,	updating	the
entire	dataset	so	we	no	longer	have	missing	values.

Did	we	cause	much	of	a	change	from	the	earlier	distributions?	No,	because
we	only	updated	5	percent	of	the	values.	For	example,	for	Feature	3,	based	on
the	beta	distribution,	the	mean	and	standard	deviations	change	like	so:

non-NaN	mean,	std	=	2.169986,	0.474514
updated	mean,	std	=	2.173269,	0.462957

The	moral	of	the	story	is	that	if	there’s	enough	missing	data	that	the	dataset
might	become	biased	by	dropping	it,	the	safest	thing	to	do	is	replace	the	missing
data	with	the	mean	or	median.	To	decide	whether	to	use	the	mean	or	median,
consult	descriptive	statistics,	a	box	plot,	or	a	histogram.

Additionally,	if	the	dataset	is	labeled,	as	a	deep	learning	dataset	would	be,
the	process	described	above	needs	to	be	completed	with	the	mean	or	median	of
samples	grouped	by	each	class.	Otherwise,	the	calculated	value	might	be
inappropriate	for	the	class.

With	missing	data	eliminated,	deep	learning	models	can	be	trained	on	the
dataset.

Correlation
At	times,	there	is	an	association	between	the	features	in	a	dataset.	If	one	goes	up,
the	other	might	go	up	as	well,	though	not	necessarily	in	a	simple	linear	way.	Or,
the	other	might	go	down—a	negative	association.	The	proper	word	for	this	type
of	association	is	correlation.	A	statistic	that	measures	correlation	is	a	handy	way
to	understand	how	the	features	in	a	dataset	are	related.

For	example,	it	isn’t	hard	to	see	that	the	pixels	of	most	images	are	highly
correlated.	This	means	if	we	select	a	pixel	at	random	and	then	an	adjacent	pixel,
there’s	a	good	chance	the	second	pixel	will	be	similar	to	the	first	pixel.	Images
where	this	is	not	true	look	to	us	like	random	noise.

In	traditional	machine	learning,	highly	correlated	features	were	undesirable,
as	they	didn’t	add	any	new	information	and	only	served	to	confuse	the	models.
The	entire	art	of	feature	selection	was	developed,	in	part,	to	remove	this	effect.
For	modern	deep	learning,	where	the	network	itself	learns	a	new	representation
of	the	input	data,	it’s	less	critical	to	have	uncorrelated	inputs.	This	is,	in	part,



of	the	input	data,	it’s	less	critical	to	have	uncorrelated	inputs.	This	is,	in	part,
why	images	work	as	inputs	to	deep	networks	when	they	usually	fail	to	work	at
all	with	older	machine	learning	models.

Whether	the	learning	is	traditional	or	modern,	as	part	of	summarizing	and
exploring	a	dataset,	correlations	among	the	features	are	worth	examining	and
understanding.	In	this	section,	we’ll	discuss	two	types	of	correlations.	Each	type
returns	a	single	number	that	measures	the	strength	of	the	correlation	between
two	features	in	the	dataset.

Pearson	Correlation
The	Pearson	correlation	coefficient	returns	a	number,	r	ϵ	[–1,	+1],	that	indicates
the	strength	of	the	linear	correlation	between	two	features.	By	linear	we	mean
how	strongly	we	can	describe	the	correlation	between	the	features	by	a	line.	If
the	correlation	is	such	that	one	feature	goes	up	exactly	as	the	other	feature	goes
up,	the	correlation	coefficient	is	+1.	Conversely,	if	the	second	feature	goes	down
exactly	as	the	other	goes	up,	the	correlation	is	–1.	A	correlation	of	zero	means
there	is	no	association	between	the	two	features;	they	are	(possibly)	independent.

I	slipped	the	word	possibly	in	the	sentence	above	because	there	are	situations
where	a	nonlinear	dependence	between	two	features	might	lead	to	a	zero	Pearson
correlation	coefficient.	These	situations	are	not	common,	however,	and	for	our
purposes,	we	can	claim	a	correlation	coefficient	near	zero	indicates	the	two
features	are	independent.	The	closer	the	correlation	coefficient	is	to	zero,	either
positive	or	negative,	the	weaker	the	correlation	between	the	features.

The	Pearson	correlation	is	defined	using	the	means	of	the	two	features	or	the
means	of	products	of	the	two	features.	The	inputs	are	two	features,	two	columns
of	the	dataset.	We’ll	call	these	inputs	X	and	Y,	where	the	capital	letter	refers	to	a
vector	of	data	values.	Note,	since	these	are	two	features	from	the	dataset,	Xi	is
paired	with	Yi,	meaning	they	both	come	from	the	same	feature	vector.

The	formula	for	the	Pearson	correlation	coefficient	is

We’ve	introduced	a	new,	but	commonly	used,	notation.	The	mean	of	X	is	the
expectation	of	X,	denoted	as	E(X).	Therefore,	in	Equation	4.5,	we	see	the	mean
of	X,	E(X),	and	the	mean	of	Y,	E(Y).	As	we	might	suspect,	E(XY)	is	the	mean	of
the	product	of	X	and	Y,	element	by	element.	Similarly,	E(X2)	is	the	mean	of	the
product	of	X	with	itself,	and	E(X)2	is	the	square	of	the	mean	of	X.	With	this



notation	in	hand,	we	can	easily	write	our	own	function	to	calculate	the	Pearson
correlation	of	two	vectors	of	features:

import	numpy	as	np
def	pearson(x,y):
				exy	=	(x*y).mean()
				ex	=	x.mean()
				ey	=	y.mean()
				exx	=	(x*x).mean()
				ex2	=	x.mean()**2
				eyy	=	(y*y).mean()
				ey2	=	y.mean()**2
				return	(exy	-	ex*ey)/(np.sqrt(exx-ex2)*np.sqrt(eyy-ey2))

The	pearson	function	directly	implements	Equation	4.5.
Let’s	set	up	a	scenario	where	we	can	use	pearson	and	compare	it	to	what

NumPy	and	SciPy	provide.	The	code	that	follows,	including	the	definition	of
pearson	above,	is	in	the	file	correlation.py.

First,	we’ll	create	three	correlated	vectors,	x,	y,	and	z.	We	imagine	that	these
are	features	from	a	dataset	so	that	x[0]	is	paired	with	y[0]	and	z[0].	The	code	we
need	is

np.random.seed(8675309)
N	=	100
x	=	np.linspace(0,1,N)	+	(np.random.random(N)-0.5)
y	=	np.random.random(N)*x
z	=	-0.1*np.random.random(N)*x

Notice	that	we’re	again	fixing	the	NumPy	pseudorandom	seed	to	make	the
output	reproducible.	The	first	feature,	x,	is	a	noisy	line	from	zero	to	one.	The
second,	y,	tracks	x	but	is	also	noisy	because	of	the	multiplication	by	a	random
value	in	[0,	1).	Finally,	z	is	negatively	correlated	to	x	because	of	the	–0.1
coefficient.

The	top	chart	in	Figure	4-6	plots	the	three	feature	values	sequentially	to	see
how	they	track	each	other.	The	bottom	chart	shows	the	three	as	paired	points,
with	one	value	on	the	x-axis	and	the	other	on	the	y-axis.





Figure	4-6:	Three	features	in	sequence	to	show	how	they	track	(top),	and	a	scatter	plot	of	the	features	as
pairs	(bottom)

The	NumPy	function	to	calculate	the	Pearson	correlation	is	np.corrcoef.	Unlike
our	version,	this	function	returns	a	matrix	showing	the	correlations	between	all
pairs	of	variables	passed	to	it.	For	example,	using	our	pearson	function,	we	get	the
following	as	the	correlation	coefficients	between	x,	y,	and	z:

pearson(x,y):		0.682852
pearson(x,z):	-0.850475
pearson(y,z):	-0.565361

NumPy	returns	the	following,	with	x,	y,	and	z	stacked	as	a	single	3	×	100	array:

>>>	d	=	np.vstack((x,y,z))
>>>	print(np.corrcoef(d))
[[	1.										0.68285166	-0.85047468]
	[	0.68285166		1.									-0.56536104]
	[-0.85047468	-0.56536104		1.								]]

The	diagonal	corresponds	to	the	correlation	with	each	feature	and	itself,	which	is
naturally	perfect	and	therefore	1.0.	The	correlation	between	x	and	y	is	in	element
0,1	and	matches	our	pearson	function	value.	Similarly,	the	correlation	between	x
and	z	is	in	element	0,2,	and	the	correlation	between	y	and	z	is	in	element	1,2.
Notice	also	that	the	matrix	is	symmetric,	which	we	expect	because	corr(X,	Y)	=
corr(Y,	X).

SciPy’s	correlation	function	is	stats.pearsonr,	which	acts	like	ours	but	returns	a
p-value	along	with	the	r	value.	We’ll	discuss	p-values	more	later	in	the	chapter.
We	use	the	returned	p-value	as	the	probability	of	an	uncorrelated	system
producing	the	calculated	correlation	value.	For	our	example	features,	the	p-value
is	virtually	identical	to	zero,	implying	there’s	no	reasonable	likelihood	that	an
uncorrelated	system	produced	the	features.

We	stated	earlier	that	for	images,	nearby	pixels	are	usually	highly	correlated.
Let’s	see	if	this	is	actually	true	for	a	sample	image.	We’ll	use	the	China	image
included	with	sklearn	and	treat	specific	rows	of	the	green	band	as	the	paired
vectors.	We’ll	calculate	the	correlation	coefficient	for	two	adjacent	rows,	a	row
further	away,	and	a	random	vector:

>>>	from	sklearn.datasets	import	load_sample_image
>>>	china	=	load_sample_image('china.jpg')
>>>	a	=	china[230,:,1].astype("float64")
>>>	b	=	china[231,:,1].astype("float64")



>>>	c	=	china[400,:,1].astype("float64")
>>>	d	=	np.random.random(640)
>>>	pearson(a,b)
0.8979360
>>>	pearson(a,c)
-0.276082
>>>	pearson(a,d)
-0.038199

Comparing	row	230	and	row	231	shows	that	they	are	highly	positively
correlated.	Comparing	rows	230	and	400	shows	a	weaker	and,	in	this	case,
negative	correlation.	Finally,	as	we	might	expect,	correlation	with	a	random
vector	gives	a	value	approaching	zero.

The	Pearson	correlation	coefficient	is	so	widely	used	that	you’ll	often	see	it
referred	to	as	merely	the	correlation	coefficient.	Let’s	now	take	a	look	at	a
second	correlation	function	and	see	how	it	differs	from	the	Pearson	coefficient.

Spearman	Correlation
The	second	correlation	measure	we’ll	explore	is	the	Spearman	correlation
coefficient,	ρ	ϵ	[–1,	+1].	It’s	a	measure	based	on	the	ranks	of	the	feature	values
instead	of	the	values	themselves.

To	rank	X,	we	replace	each	value	in	X	with	the	index	to	that	value	in	the
sorted	version	of	X.	If	X	is

[86,	62,	28,	43,	3,	92,	38,	87,	74,	11]

then	the	ranks	are

[7,	5,	2,	4,	0,	9,	3,	8,	6,	1]

because	when	X	is	sorted,	86	goes	in	the	eighth	place	(counting	from	zero),	and
3	goes	first.

The	Pearson	correlation	looks	for	a	linear	relationship,	whereas	the
Spearman	looks	for	any	monotonic	association	between	the	inputs.

If	we	have	the	ranks	for	the	feature	values,	then	the	Spearman	coefficient	is

where	n	is	the	number	of	samples	and	d	=	rank(X)	–	rank(Y)	is	the	difference	of



the	rank	of	the	paired	X	and	Y	values.	Note	how	Equation	4.6	is	only	valid	if	the
rankings	are	unique	(that	is,	there	are	no	repeated	values	in	X	or	Y).

To	calculate	d	in	Equation	4.6,	we	need	to	rank	X	and	Y	and	use	the
difference	of	the	ranks.	The	Spearman	correlation	is	the	Pearson	correlation	of
the	ranks.

The	example	above	points	the	way	to	an	implementation	of	the	Spearman
correlation:

import	numpy	as	np
def	spearman(x,y):
				n	=	len(x)
				t	=	x[np.argsort(x)]
				rx	=	[]
				for	i	in	range(n):
				rx.append(np.where(x[i]	==	t)[0][0])
rx	=	np.array(rx,	dtype="float64")
t	=	y[np.argsort(y)]
ry	=	[]
for	i	in	range(n):
				ry.append(np.where(y[i]	==	t)[0][0])
ry	=	np.array(ry,	dtype="float64")
d	=	rx	-	ry
return	1.0	-	(6.0/(n*(n*n-1)))*(d**2).sum()

To	get	the	ranks,	we	need	to	first	sort	X	(t).	Then,	for	each	value	in	X	(x),	we	find
where	it	occurs	in	t	via	np.where	and	take	the	first	element,	the	first	match.	After
building	the	rx	list,	we	make	it	a	floating-point	NumPy	array.	We	do	the	same	for
Y	to	get	ry.	With	the	ranks,	d	is	set	to	their	difference,	and	Equation	4.6	is	used	to
return	the	Spearman	ρ	value.

Please	note	that	this	version	of	the	Spearman	correlation	is	limited	by
Equation	4.6	and	should	be	used	when	there	are	no	duplicate	values	in	X	or	Y.
Our	example	in	this	section	uses	random	floating-point	values,	so	the	probability
of	an	exact	duplicate	is	quite	low.

We’ll	compare	our	spearman	implementation	to	the	SciPy	version,	stats
.spearmanr.	Like	the	SciPy	version	of	the	Pearson	correlation,	stats.spearmanr	returns	a
p-value.	We’ll	ignore	it.	Let’s	see	how	our	function	compares:

>>>	from	scipy.stats	import	spearmanr
>>>	print(spearman(x,y),	spearmanr(x,y)[0])
0.694017401740174	0.6940174017401739
>>>	print(spearman(x,z),	spearmanr(x,z)[0])
-0.8950855085508551	-0.895085508550855
>>>	print(spearman(y,z),	spearmanr(y,z)[0])



-0.6414041404140414	-0.6414041404140414

We	have	complete	agreement	with	the	SciPy	function	out	to	the	last	bit	or	so	of
the	floating-point	value.

It’s	important	to	remember	the	fundamental	difference	between	the	Pearson
and	Spearman	correlations.	For	example,	consider	the	correlation	between	a
linear	ramp	and	the	sigmoid	function:

ramp	=	np.linspace(-20,20,1000)
sig	=	1.0	/	(1.0	+	np.exp(-ramp))
print(pearson(ramp,sig))
print(spearman(ramp,sig))

Here,	ramp	increases	linearly	from	–20	to	20	and	sig	follows	a	sigmoid	shape	(“S”
curve).	The	Pearson	correlation	will	be	on	the	high	side,	since	both	are
increasing	as	x	becomes	more	positive,	but	the	association	is	not	purely	linear.
Running	the	example	gives

0.905328
1.0

indicating	a	Pearson	correlation	of	0.9	but	a	perfect	Spearman	correlation	of	1.0,
since	for	every	increase	in	ramp	there	is	an	increase	in	sig	and	only	an	increase.
The	Spearman	correlation	has	captured	the	nonlinear	relationship	between	the
arguments,	while	the	Pearson	correlation	has	only	hinted	at	it.	If	we’re	analyzing
a	dataset	intended	for	a	classical	machine	learning	algorithm,	the	Spearman
correlation	might	help	us	decide	which	features	to	keep	and	which	to	discard.

This	concludes	our	examination	of	statistics	for	describing	and
understanding	data.	Let’s	now	learn	how	to	use	hypothesis	testing	to	interpret
experimental	results	and	answer	questions	like	“Are	these	two	sets	of	data
samples	from	the	same	parent	distribution?”

Hypothesis	Testing
We	have	two	independent	sets	of	50	students	studying	cell	biology.	We	have	no
reason	to	believe	the	groups	differ	in	any	significant	way,	as	students	from	the
larger	population	were	assigned	randomly.	Group	1	attended	the	lectures	and,	in
addition,	worked	through	a	structured	set	of	computer	exercises.	Group	2	only
attended	the	lectures.	Both	groups	took	the	same	final	examination,	leading	to
the	test	scores	given	in	Table	4-1.	We	want	to	know	if	asking	the	students	to



work	through	the	computer	exercises	made	a	difference	in	their	final	test	scores.

Table	4-1:	Group	1	and	Group	2	Test	Scores

Gr
oup	
1

81	80	85	87	83	87	87	90	79	83	88	75	87	92	78	80	83	91	82	88	89	92
97	82	79	82	82	85	89	91	83	85	77	81	90	87	82	84	86	79	84	85	90	84
90	85	85	78	94	100

Gr
oup	
2

92	82	78	74	86	69	83	67	85	82	81	91	79	82	82	88	80	63	85	86	77	94
85	75	77	89	86	71	82	82	80	88	72	91	90	92	95	87	71	83	94	90	78	60
76	88	91	83	85	73

Figure	4-7	shows	a	box	plot	of	Table	4-1.
To	understand	if	there	is	a	significant	change	in	final	test	scores	between	the

two	groups,	we	need	to	test	some	hypotheses.	The	method	we’ll	use	to	test	the
hypotheses	is	known	as	hypothesis	testing,	and	it’s	a	critical	piece	of	modern
science.



Figure	4-7:	Box	plot	for	the	data	in	Table	4-1

Hypothesis	testing	is	a	broad	topic,	too	extensive	for	us	to	provide	more	than
a	minimal	introduction	here.	As	this	is	a	book	on	deep	learning,	we’ll	focus	on
the	scenario	a	deep	learning	researcher	is	likely	to	encounter.	We’ll	consider
only	two	hypothesis	tests:	the	t-test	for	unpaired	samples	of	differing	variance	(a
parametric	test)	and	the	Mann-Whitney	U	(a	nonparametric	test).	As	we
progress,	we’ll	understand	what	these	tests	are	and	why	we’re	restricting
ourselves	to	them,	as	well	as	the	meaning	of	parametric	and	nonparametric.

To	be	successful	with	hypothesis	testing,	we	need	to	know	what	we	mean	by
hypothesis,	so	we’ll	address	that	first,	along	with	our	rationale	for	limiting	the
types	of	hypothesis	testing	we’ll	consider.	With	the	hypothesis	concept	in	hand,
we’ll	discuss	the	t-test	and	the	Mann-Whitney	U	test	in	turn,	using	the	data	in
Table	4-1	as	our	example.	Let’s	get	started.

Hypotheses
To	understand	if	two	sets	of	data	are	from	the	same	parent	distribution	or	not,	we
might	look	at	summary	statistics.	Figure	4-7	shows	us	the	box	plot	for	Group	1
and	Group	2.	It	appears	that	the	two	groups	have	different	means	and	standard
deviations.	How	do	we	know?	The	box	plot	shows	us	the	location	of	the
medians,	and	the	whiskers	tell	us	something	about	the	variance.	Both	of	these
together	hint	that	the	means	will	be	different	because	the	medians	are	different,
and	both	sets	of	data	are	reasonably	symmetric	around	the	median.	The	space
between	the	whiskers	hints	at	the	standard	deviation.	So,	let’s	make	hypotheses
using	the	means	of	the	datasets.

In	hypothesis	testing,	we	have	two	hypotheses.	The	first,	known	as	the	null
hypothesis	(H0),	is	that	the	two	sets	of	data	are	from	the	same	parent
distribution,	that	there	is	nothing	special	to	differentiate	them.	The	second
hypothesis,	the	alternative	hypothesis	(Ha),	is	that	the	two	groups	are	not	from
the	same	distribution.	Since	we’ll	be	using	the	means,	H0	is	saying	that	the
means,	really	the	means	of	the	parent	population	that	generated	the	data,	are	the
same.	Similarly,	if	we	reject	H0,	we	are	implicitly	accepting	Ha	and	claiming	we
have	evidence	that	the	means	are	different.	We	don’t	have	the	true	population
means,	so	we’ll	use	the	sample	means	and	standard	deviations	instead.

Hypothesis	testing	doesn’t	tell	us	definitively	whether	H0	is	true.	Instead,	it
gives	us	evidence	in	favor	of	rejecting	or	accepting	the	null	hypothesis.	It’s
critical	to	remember	this.

We’re	testing	two	independent	samples	to	see	if	we	should	think	of	them	as



We’re	testing	two	independent	samples	to	see	if	we	should	think	of	them	as
coming	from	the	same	parent	distribution.	There	are	other	ways	to	use
hypothesis	testing,	but	we	rarely	encounter	them	in	deep	learning.	For	the	task	at
hand,	we	need	the	sample	means	and	the	sample	standard	deviations.	Our	tests
will	ask	the	question,	“Is	there	a	meaningful	difference	in	the	means	of	these	two
sets?”

We’re	only	interested	in	detecting	whether	the	two	groups	of	data	are	from
the	same	parent	distribution,	so	another	simplification	we’ll	make	is	that	all	of
our	tests	will	be	two-sided,	or	two-tailed.	When	we	use	a	test,	like	the	t-test	we’ll
describe	next,	we’re	comparing	our	calculated	test	statistic	(the	t-value)	to	the
distribution	of	the	test	statistic	and	asking	questions	about	how	likely	our
calculated	t-value	is.	If	we	want	to	know	about	the	test	statistic	being	above	or
below	some	fraction	of	that	distribution,	we’re	making	a	two-sided	test.	If
instead	we	want	to	know	about	the	likelihood	of	the	test	statistic	being	above	a
particular	value	without	caring	about	it	being	below,	or	vice	versa,	then	we’re
making	a	one-sided	test.

Let’s	lay	out	our	assumptions	and	approach:

1.	 We	have	two	independent	sets	of	data	we	wish	to	compare.
2.	 We’re	making	no	assumption	as	to	whether	the	standard	deviations	of	the

data	are	the	same.
3.	 Our	null	hypothesis	is	that	the	means	of	the	parent	distributions	of	the

datasets	are	the	same,	H0	:	μ1	=	μ2.	We’ll	use	the	sample	means	 	and
sample	standard	deviations	(s1,	s2)	to	help	us	decide	to	accept	or	reject	H0.

4.	 Hypothesis	tests	assume	that	the	data	is	independent	and	identically
distributed	(i.i.d.).	We	interpret	this	as	a	statement	that	the	data	is	a	fair
random	sample.

With	these	assumptions	understood,	let’s	start	with	the	t-test,	the	most
widely	used	hypothesis	test.

The	t-test
The	t-test	depends	on	t,	the	test	statistic.	This	statistic	is	compared	to	the	t-
distribution	and	used	to	generate	a	p-value,	a	probability	we’ll	use	to	reach	a
conclusion	about	H0.	There’s	a	rich	history	behind	the	t-test	and	the	related	z-test
that	we’ll	ignore	here.	I	encourage	you	to	dive	more	deeply	into	hypothesis
testing	when	you	have	the	chance	or,	at	a	minimum,	review	thoughtful	articles
about	the	proper	way	to	do	a	hypothesis	test	and	interpret	its	results.



The	t-test	is	a	parametric	test.	This	means	there	are	assumptions	about	the
data	and	the	distribution	of	the	data.	Specifically,	the	t-test	assumes,	beyond	the
data	being	i.i.d.,	that	the	distribution	(histogram)	of	the	data	is	normal.	We’ve
stated	before	that	many	physical	processes	do	seem	to	follow	a	normal
distribution,	so	there’s	reason	to	think	that	data	from	actual	measurements	might
do	so.

There	are	many	ways	to	test	if	a	dataset	is	normally	distributed,	but	we’ll
ignore	them,	as	there’s	some	debate	about	the	utility	of	such	tests.	Instead,	I’ll
(somewhat	recklessly)	suggest	you	use	the	t-test	and	the	Mann-Whitney	U	test
together	to	help	make	your	decision	about	accepting	or	rejecting	H0.	Using	both
tests	might	lead	to	a	situation	where	they	disagree,	where	one	test	says	there’s
evidence	against	the	null	hypothesis	and	the	other	says	there	isn’t.	In	general,	if
the	nonparametric	test	is	claiming	evidence	against	H0,	then	one	should	probably
accept	that	evidence	regardless	of	the	t-test	result.	If	the	t-test	result	is	against
H0,	but	the	Mann-Whitney	U	test	isn’t,	and	you	think	the	data	is	normal,	then
you	might	also	accept	the	t-test	result.

The	t-test	has	different	versions.	We	explicitly	stated	above	that	we’ll	use	a
version	designed	for	datasets	of	differing	size	and	variance.	The	specific	version
of	the	t-test	we’ll	use	is	Welch’s	t-test,	which	doesn’t	assume	the	variance	of	the
two	datasets	is	the	same.

The	t-score	for	Welch’s	t-test	is

where	n1	and	n2	are	the	size	of	the	two	groups.
The	t-score,	and	an	associated	value	known	as	the	degrees	of	freedom,	which

is	similar	to	but	also	different	from	the	degrees	of	freedom	mentioned	above,
generates	the	appropriate	t-distribution	curve.	To	get	a	p-value,	we	calculate	the
area	under	the	curve,	both	above	and	below	(positive	and	negative	t-score),	and
return	it.	Since	the	integral	of	a	probability	distribution	is	1,	the	total	area	under
the	tails	from	the	positive	and	negative	t-score	value	to	positive	and	negative
infinity	will	be	the	p-value.	We’ll	use	the	degrees	of	freedom	below	to	help	us
calculate	confidence	intervals.

What	does	the	p-value	tell	us?	It	tells	us	the	probability	of	seeing	the
difference	between	the	two	means	we	see,	or	larger,	if	the	null	hypothesis	is	true.
Typically,	if	this	probability	is	below	some	threshold	we’ve	chosen,	we	reject



the	null	hypothesis	and	say	we	have	evidence	that	the	two	groups	have	different
means—that	they	come	from	different	parent	distributions.	When	we	reject	H0,
we	say	that	the	difference	is	statistically	significant.	The	threshold	for
accepting/rejecting	H0	is	called	α,	usually	with	α	=	0.05	as	a	typical,	if
problematic,	value.	We’ll	discuss	why	0.05	is	problematic	below.

The	point	to	remember	is	that	the	p-value	assumes	the	null	hypothesis	is	true.
It	tells	us	the	likelihood	of	a	true	H0	giving	us	at	least	the	difference	we	see,	or
greater,	between	the	groups.	If	the	p-value	is	small,	that	has	two	possible
meanings:	(1)	the	null	hypothesis	is	false,	or	(2)	a	random	sampling	error	has
given	us	samples	that	fall	outside	what	we	might	expect.	Since	the	p-value
assumes	H0	is	true,	a	small	p-value	helps	us	believe	less	and	less	in	(2)	and
boosts	our	confidence	that	(1)	might	be	correct.	However,	the	p-value	alone
cannot	confirm	(1);	other	knowledge	needs	to	come	into	play.

I	mentioned	that	using	α	=	0.05	is	problematic.	The	main	reason	it’s
problematic	is	that	it’s	too	generous;	it	leads	to	too	many	rejections	of	a	true	null
hypothesis.	According	to	James	Berger	and	Thomas	Sellke	in	their	article
“Testing	a	Point	Null	Hypothesis:	The	Irreconcilability	of	P	Values	and
Evidence”	(Journal	of	the	American	Statistical	Association,	1987),	when	α	=
0.05,	about	30	percent	of	true	null	hypotheses	will	be	rejected.	When	we	use
something	like	α	≤	0.001,	the	chance	of	falsely	rejecting	a	true	null	hypothesis
goes	down	to	less	than	3	percent.	The	moral	of	the	story	is	that	p	<	0.05	is	not
magic	and,	frankly,	is	unconvincing	for	a	single	study.	Look	for	highly
significant	p-values	of	at	least	0.001	or,	preferably,	much	smaller.	At	p		=	0.05,
all	you	have	is	a	suggestion,	and	you	should	repeat	the	experiment.	If	repeated
experiments	all	have	a	p-value	around	0.05,	then	rejecting	the	null	hypothesis
begins	to	make	sense.

Confidence	Intervals
Along	with	a	p-value,	you’ll	often	see	confidence	intervals	(CIs).	The
confidence	interval	gives	bounds	within	which	we	believe	the	true	population
difference	in	the	means	will	lie,	with	a	given	confidence	for	repeated	samples	of
the	two	datasets	we’re	comparing.	Typically,	we	report	95	percent	confidence
intervals.	Our	hypothesis	tests	check	for	equality	of	means	by	asking	if	the
difference	of	the	sample	means	is	zero	or	not.	Therefore,	any	CI	that	includes
zero	signals	to	us	that	we	cannot	reject	the	null	hypothesis.

For	Welch’s	t-test,	the	degrees	of	freedom	is



which	we	can	use	to	calculate	confidence	intervals,

where	t1–α/2,df	is	the	critical	value,	and	the	t-value	for	the	given	confidence	level
(α)	and	the	degrees	of	freedom,	df,	come	from	Equation	4.7.

How	should	we	interpret	the	95	percent	confidence	interval?	There	is	a
population	value:	the	true	difference	between	the	group	means.	The	95	percent
confidence	interval	is	such	that	if	we	could	draw	repeated	samples	from	the
distribution	that	produced	the	two	datasets,	95	percent	of	the	calculated
confidence	intervals	would	contain	the	true	difference	between	the	means.	It	is
not	the	range	that	includes	the	true	difference	in	the	means	at	95	percent
certainty.

Beyond	checking	if	zero	is	in	the	CI,	the	CI	is	useful	because	its	width	tells
us	something	about	the	magnitude	of	the	effect.	Here,	the	effect	is	related	to	the
difference	between	the	means.	We	may	have	a	statistically	significant	difference
based	on	the	p-value,	but	the	effect	might	be	practically	meaningless.	The	CI
will	be	narrow	when	the	effect	is	large	because	small	CIs	imply	a	narrow	range
encompassing	the	true	effect.	We’ll	see	shortly	how,	when	possible,	to	calculate
another	useful	measure	of	effect.

Finally,	a	p-value	less	than	α	also	will	have	a	CIα	that	does	not	include	H0.	In
other	words,	what	the	p-value	tells	us	and	what	the	confidence	interval	tells	us
track–they	will	not	contradict	each	other.

Effect	Size
It’s	one	thing	to	have	a	statistically	significant	p-value.	It’s	another	for	the
difference	represented	by	that	p-value	to	be	meaningful	in	the	real	world.	A
popular	measure	of	the	size	of	an	effect,	the	effect	size,	is	Cohen’s	d.	For	us,
since	we’re	using	Welch’s	t-test,	Cohen’s	d	is	found	by	calculating



Cohen’s	d	is	usually	interpreted	subjectively,	though	we	should	report	the
numeric	value	as	well.	Subjectively,	the	size	of	the	effect	could	be

d Effect
0.2 Small
0.5 Medium
0.8 Large

Cohen’s	d	makes	sense.	The	difference	between	the	means	is	a	natural	way
to	think	about	the	effect.	Scaling	it	by	the	mean	variance	puts	it	in	a	consistent
range.	From	Equation	4.9,	we	see	that	a	p-value	corresponding	to	a	statistically
significant	result	might	lead	to	a	small	effect	that	isn’t	of	any	true	practical
importance.

Evaluating	the	Test	Scores
Let’s	put	all	of	the	above	together	to	apply	the	t-test	to	our	test	data	from	Table
4-1.	You’ll	find	the	code	in	the	file	hypothesis.py.	We	generate	the	data-sets
first:

np.random.seed(65535)
a	=	np.random.normal(85,6,50).astype("int32")
a[np.where(a	>	100)]	=	100
b	=	np.random.normal(82,7,50).astype("int32")
b[np.where(b	>	100)]	=	100

Once	again,	we’re	using	a	fixed	NumPy	pseudorandom	number	seed	for
repeatability.	We	make	a	a	sample	from	a	normal	distribution	with	a	mean	of	85
and	a	standard	deviation	of	6.0.	We	select	b	from	a	normal	distribution	with	a
mean	of	82	and	a	standard	deviation	of	7.0.	For	both,	we	cap	any	values	over
100	to	100.	These	are	test	scores,	after	all,	without	extra	credit.

We	apply	the	t-test	next:

from	scipy.stats	import	ttest_ind
t,p	=	ttest_ind(a,b,	equal_var=False)
print("(t=%0.5f,	p=%0.5f)"	%	(t,p))

We	get	(t	=	2.40234,	p	=	0.01852).	The	t	is	the	statistic,	and	p	is	the	computed	p-
value.	It’s	0.019,	which	is	less	than	0.05	but	only	by	a	factor	of	two.	We	have	a
weak	result	telling	us	we	might	want	to	reject	the	null	hypothesis	and	believe
that	the	two	groups,	a	and	b,	come	from	different	distributions.	Of	course,	we



know	they	do	because	we	generated	them,	but	it’s	nice	to	see	the	test	pointing	in
the	right	direction.

Notice	that	the	function	we	import	from	SciPy	is	ttest_ind.	This	is	the	function
to	use	for	independent	samples,	which	are	not	paired.	Also,	notice	that	we	added
equal_var=False	to	the	call.	This	is	how	to	use	Welch’s	t-test,	which	doesn’t	assume
that	the	variance	between	the	two	datasets	is	equal.	We	know	they’re	not	equal,
since	a	uses	a	standard	deviation	of	6.0	while	b	uses	7.0.

To	get	the	confidence	intervals,	we’ll	write	a	CI	function,	since	NumPy	and
SciPy	don’t	include	one.	The	function	directly	implements	Equations	4.7	and
4.8:

from	scipy	import	stats
def	CI(a,	b,	alpha=0.05):
				n1,	n2	=	len(a),	len(b)
				s1,	s2	=	np.std(a,	ddof=1)**2,	np.std(b,	ddof=1)**2
				df	=	(s1/n1	+	s2/n2)**2	/	((s1/n1)**2/(n1-1)	+	(s2/n2)**2/(n2-1))
				tc	=	stats.t.ppf(1	-	alpha/2,	df)
				lo	=	(a.mean()-b.mean())	-	tc*np.sqrt(s1/n1	+	s2/n2)
				hi	=	(a.mean()-b.mean())	+	tc*np.sqrt(s1/n1	+	s2/n2)
				return	lo,	hi

The	critical	t	value	is	given	by	calling	stats.t.ppf,	passing	in	the	α/2	value	and	the
proper	degrees	of	freedom,	df.	The	critical	t	value	is	the	97.5	percent	percentile
value,	for	α	=	0.05,	which	is	what	the	percent	point	function	(ppf)	returns.	We
divide	by	two	to	cover	the	tails	of	the	t-distribution.

For	our	test	example,	the	confidence	interval	is	[0.56105,	5.95895].	Notice
how	this	does	not	include	zero,	so	the	CI	also	indicates	a	statistically	significant
result.	However,	the	range	is	rather	large,	so	this	is	not	a	particularly	robust
result.	The	CI	range	can	be	difficult	to	interpret	on	its	own,	so,	finally,	let’s
calculate	Cohen’s	d	to	see	if	it	makes	sense	given	the	width	of	the	confidence
interval.	In	code,	we	implement	Equation	4.9:

def	Cohen_d(a,b):
				s1	=	np.std(a,	ddof=1)**2
				s2	=	np.std(b,	ddof=1)**2
				return	(a.mean()	-	b.mean())	/	np.sqrt(0.5*(s1+s2))

We	get	d	=	0.48047,	corresponding	to	a	medium	effect	size.

The	Mann-Whitney	U	Test
The	t-test	assumes	the	distribution	of	the	source	data	is	normal.	If	the	data	is	not



normally	distributed,	we	should	instead	use	a	nonparametric	test.	Nonparametric
tests	make	no	assumptions	about	the	underlying	distribution	of	the	data.	The
Mann-Whitney	U	test,	sometimes	called	the	Wilcoxon	rank-sum	test,	is	a
nonparametric	test	to	help	decide	if	two	different	sets	of	data	come	from	the
same	parent	distribution.	The	Mann-Whitney	U	test	does	not	rely	directly	on	the
values	of	the	data,	but	instead	uses	the	data’s	ranking.

The	null	hypothesis	for	this	test	is	the	following:	the	probability	that	a
randomly	selected	value	from	Group	1	is	larger	than	a	randomly	selected	value
from	Group	2	is	0.5.	Let’s	think	a	bit	about	that.	If	the	data	is	from	the	same
parent	distribution,	then	we	should	expect	any	randomly	selected	pair	of	values
from	the	two	groups	to	show	no	preference	as	to	which	is	larger	than	the	other.

The	alternative	hypothesis	is	that	the	probability	of	a	randomly	selected
value	from	Group	1	being	larger	than	a	randomly	selected	value	from	Group	2	is
not	0.5.	Notice,	there	is	no	statement	as	to	the	probability	being	greater	or	less
than	0.5,	only	that	it	isn’t	0.5;	thus,	the	Mann-Whitney	U	test,	as	we’ll	use	it,	is
two-sided.

The	null	hypothesis	for	the	Mann-Whitney	U	test	is	not	the	same	as	the	null
hypothesis	for	the	t-test.	For	the	t-test,	we’re	asking	whether	the	means	between
the	two	groups	are	the	same.	(Really,	we’re	asking	if	the	difference	in	the	means
is	zero.)	However,	if	two	sets	of	data	are	from	different	parent	distributions,	both
null	hypotheses	are	false,	so	we	can	use	the	Mann-Whitney	U	test	in	place	of	the
t-test,	especially	when	the	underlying	data	is	not	normally	distributed.

To	generate	U,	the	Mann-Whitney	statistic,	we	first	pool	both	sets	of	data
and	rank	them.	Ties	are	replaced	with	the	mean	between	the	tie	value	rank	and
the	next	rank	value.	We	also	keep	track	of	the	source	group	so	we	can	separate
the	list	of	ranks	again.	The	ranks,	by	group,	are	summed	to	give	R1	and	R2	(using
the	ranks	from	the	pooled	data).	We	calculate	two	values,

with	the	smaller	called	U,	the	test	statistic.	It’s	possible	to	generate	a	p-value
from	U,	keeping	in	mind	all	the	discussion	above	about	the	meaning	and	use	of
p-values.	As	before,	n1	and	n2	are	the	number	of	samples	in	the	two	groups.	The
Mann-Whitney	U	test	requires	the	smaller	of	these	two	numbers	to	be	at	least	21



samples.	If	you	don’t	have	that	many,	the	results	may	not	be	reliable	when	using
the	SciPy	mannwhitneyu	function.

We	can	run	the	Mann-Whitney	U	test	on	our	test	data	from	Table	4-1,

from	scipy.stats	import	mannwhitneyu
u,p	=	mannwhitneyu(a,b)
print("(U=%0.5f,	p=%0.5f)"	%	(u,p))

with	a	and	b	as	we	used	above	for	the	t-test.	This	gives	us	(U	=	997.00000,	p	=
0.04058).	The	p-value	is	barely	below	the	minimum	threshold	of	0.05.

The	means	of	a	and	b	are	85	and	82,	respectively.	What	happens	to	the	p-
values	if	we	make	the	mean	value	of	b	83	or	81?	Changing	the	mean	of	b	means
changing	the	first	argument	to	np.random.normal.	Doing	this	gives	us	Table	4-2,
where	I’ve	included	all	results	for	completeness.

Table	4-2:	Mann-Whitney	U	Test	and	t-test	Results	for	the	Simulated	Test	Scores	with	Different	Means
(n1=n2=50)

Means Mann-Whitney	U t-test
85	vs.	83 (U=1104.50000,	

p=0.15839)
(t=1.66543,	p=0.09959)

85	vs.	82 (U=997.00000,	
p=0.04058)

(t=2.40234,	p=0.01852)

85	vs.	81 (U=883.50000,	
p=0.00575)

(t=3.13925,	p=0.00234)

Table	4-2	should	make	sense	to	us.	When	the	means	are	close,	it’s	harder	to
tell	them	apart,	so	we	expect	larger	p-values.	Recall	how	we	have	only	50
samples	in	each	group.	As	the	difference	between	the	means	increases,	the	p-
values	go	down.	A	difference	of	three	in	the	means	leads	to	barely	significant	p-
values.	When	the	difference	is	larger	still,	the	p-values	become	truly	significant
—again,	as	we	expect.

The	analysis	above	begs	the	question:	for	a	small	difference	in	the	means
between	the	two	groups,	how	do	the	p-values	change	as	a	function	of	the	sample
size?

Figure	4-8	shows	the	p-value	(mean	±	standard	error)	over	25	runs	for	both
the	Mann-Whitney	U	test	and	the	t-test	as	a	function	of	sample	size	for	the	case
where	the	means	are	85	and	84.



Figure	4-8:	Mean	p-value	as	a	function	of	sample	size	for	a	difference	in	the	sample	means	of	one,	

Small	datasets	make	it	difficult	to	differentiate	between	cases	when	the
difference	in	the	means	is	small.	We	also	see	that	larger	sample	sizes	reveal	the
difference,	regardless	of	the	test.	It	is	interesting	that	in	Figure	4-8,	the	Mann-
Whitney	U	p-value	is	less	than	that	of	the	t-test	even	though	the	underlying	data
is	normally	distributed.	Conventional	wisdom	states	that	it’s	usually	the	other
way	around.

Figure	4-8	is	an	object	lesson	in	the	power	of	large-sample	tests	to	detect	real
differences.	When	the	sample	size	is	large	enough,	a	weak	difference	becomes
significant.	However,	we	need	to	balance	this	with	the	effect	size.	When	we	have
1,000	samples	in	each	group,	we	have	a	statistically	significant	p-value,	but	we
also	have	a	Cohen’s	d	of	about	0.13,	signaling	a	weak	effect.	A	large	sample
study	might	find	a	significant	effect	that	is	so	weak	as	to	be	practically
meaningless.



Summary
This	chapter	touched	on	the	key	aspects	of	statistics	you’ll	encounter	during	your
sojourn	through	the	world	of	deep	learning.	Specifically,	we	learned	about
different	types	of	data	and	how	to	ensure	the	data	is	useful	for	building	models.
We	then	learned	about	summary	statistics	and	saw	examples	that	used	them	to
help	us	understand	a	dataset.	Understanding	our	data	is	key	to	successful	deep
learning.	We	investigated	the	different	types	of	means,	learned	about	measures
of	variation,	and	saw	the	utility	of	visualizing	the	data	via	box	plots.

Missing	data	is	a	bane	of	deep	learning.	In	this	chapter,	we	investigated	how
to	compensate	for	missing	data.	Next,	we	discussed	correlation,	how	to	detect
and	measure	the	relationships	between	elements	of	a	dataset.	Finally,	we
introduced	hypothesis	testing.	Restricting	ourselves	to	the	most	likely	scenario
we’ll	encounter	in	deep	learning,	we	learned	how	to	apply	both	the	t-test	and	the
Mann-Whitney	U	test.	Hypothesis	testing	introduced	us	to	the	p-value.	We	saw
examples	of	it	and	discussed	how	to	interpret	it	correctly.

In	the	next	chapter	we’ll	leave	statistics	behind	and	dive	headfirst	into	the
world	of	linear	algebra.	Linear	algebra	is	how	we	implement	neural	networks.



5
LINEAR	ALGEBRA

Formally,	linear	algebra	is	the	study	of	linear	equations,	in	which	the	highest
power	of	the	variable	is	one.	However,	for	our	purposes,	linear	algebra	refers	to
multidimensional	mathematical	objects—like	vectors	and	matrices—and
operations	on	them.	This	is	how	linear	algebra	is	typically	applied	in	deep
learning,	and	how	data	is	manipulated	in	programs	that	implement	deep	learning
algorithms.	By	making	this	distinction,	we	are	throwing	away	a	massive	amount
of	fascinating	mathematics,	but	as	our	goal	is	to	understand	the	mathematics
used	and	applied	in	deep	learning,	we	can	hopefully	be	forgiven.

In	this	chapter,	I’ll	introduce	the	objects	used	in	deep	learning,	specifically
scalars,	vectors,	matrices,	and	tensors.	As	we’ll	see,	all	of	these	objects	are
actually	tensors	of	various	orders.	We’ll	discuss	tensors	from	a	mathematical,
notational	perspective	and	then	experiment	with	them	using	NumPy.	NumPy
was	explicitly	designed	to	add	multidimensional	arrays	to	Python,	and	they	are
good,	though	incomplete,	analogues	for	the	mathematical	objects	we’ll	work
with	in	this	chapter.

We’ll	spend	the	bulk	of	the	chapter	learning	how	to	do	arithmetic	with
tensors,	which	is	of	fundamental	importance	in	deep	learning.	Most	of	the	effort
in	implementing	highly	performant	deep	learning	toolkits	involves	finding	ways
to	do	arithmetic	with	tensors	as	efficiently	as	possible.

Scalars,	Vectors,	Matrices,	and	Tensors
Let’s	introduce	our	cast	of	characters.	I’ll	relate	them	to	Python	variables	and
NumPy	arrays	to	show	how	we’ll	implement	these	objects	in	code.	Then	I’ll



NumPy	arrays	to	show	how	we’ll	implement	these	objects	in	code.	Then	I’ll
present	a	handy	conceptual	mapping	between	tensors	and	geometry.

Scalars
Even	if	you’re	not	familiar	with	the	word,	you’ve	known	what	a	scalar	is	since
the	day	you	first	learned	to	count.	A	scalar	is	just	a	number,	like	7,	42,	or	π.	In
expressions,	we’ll	use	x	to	mean	a	scalar,	that	is,	the	ordinary	notation	used	for
variables.	To	a	computer,	a	scalar	is	a	simple	numeric	variable:

>>>	s	=	66
>>>	s
66

Vectors
A	vector	is	a	1D	array	of	numbers.	Mathematically,	a	vector	has	an	orientation,
either	horizontal	or	vertical.	If	horizontal,	it’s	a	row	vector.	For	example,

is	a	row	vector	of	three	elements	or	components.	Note,	we’ll	use	x,	a	lowercase
letter	in	bold,	to	mean	a	vector.

Mathematically,	vectors	are	usually	assumed	to	be	column	vectors,

where	y	has	four	components,	making	it	a	four-dimensional	(4D)	vector.	Notice
that	in	Equation	5.1	we	used	square	brackets,	whereas	in	Equation	5.2	we	used
parentheses.	Either	notation	is	acceptable.

In	code,	we	usually	implement	vectors	as	1D	arrays:

>>>	import	numpy	as	np
>>>	x	=	np.array([1,2,3])
>>>	print(x)
[1	2	3]
>>>	print(x.reshape((3,1)))
[[1]
	[2]
	[3]]



Here,	we’ve	used	reshape	to	turn	the	three-element	row	vector	into	a	column
vector	of	three	rows	and	one	column.

The	components	of	a	vector	are	often	interpreted	as	lengths	along	a	set	of
coordinate	axes.	For	example,	a	three-component	vector	might	be	used	to
represent	a	point	in	3D	space.	In	this	vector,

x	=	[x,	y,	z]

x	could	be	the	length	along	the	x-axis,	y	the	length	along	the	y-axis,	and	z	the
length	along	the	z-axis.	These	are	the	Cartesian	coordinates	and	serve	to
uniquely	identify	all	points	in	3D	space.

However,	in	deep	learning,	and	machine	learning	in	general,	the	components
of	a	vector	are	often	unrelated	to	each	other	in	any	strict	geometric	sense.	Rather,
they’re	used	to	represent	features,	qualities	of	some	sample	that	the	model	will
use	to	attempt	to	arrive	at	a	useful	output,	like	a	class	label,	or	a	regression
value.	That	said,	the	vector	representing	the	collection	of	features,	called	the
feature	vector,	is	sometimes	thought	about	geometrically.	For	example,	some
machine	learning	models,	like	k-nearest	neighbors,	interpret	the	vector	as
representing	some	coordinate	in	geometric	space.

You’ll	often	hear	deep	learning	people	discuss	the	feature	space	of	a
problem.	The	feature	space	refers	to	the	set	of	possible	inputs.	The	training	set
for	a	model	needs	to	accurately	represent	the	feature	space	of	the	possible	inputs
the	model	will	encounter	when	used.	In	this	sense,	the	feature	vector	is	a	point,	a
location	in	this	n-dimensional	space	where	n	is	the	number	of	features	in	the
feature	vector.

Matrices
A	matrix	is	a	2D	array	of	numbers:

The	elements	of	A	are	subscripted	by	the	row	number	and	column	number.
The	matrix	A	has	three	rows	and	four	columns,	so	we	say	that	it’s	a	3	×	4	matrix,
where	3	×	4	is	the	order	of	the	matrix.	Notice	that	A	uses	subscripts	starting	with
0.	Math	texts	often	begin	with	1,	but	increasingly,	they’re	using	0	so	that	there
isn’t	an	offset	between	the	math	notation	and	the	computer	representation	of	the
matrix.	Note,	also,	that	we’ll	use	A,	an	uppercase	letter	in	bold,	to	mean	a



matrix.
In	code,	matrices	are	represented	as	2D	arrays:

>>>	A	=	np.array([[1,2,3],[4,5,6],[7,8,9]])
>>>	print(A)
[[1	2	3]
	[4	5	6]
	[7	8	9]]
>>>	print(np.arange(12).reshape((3,4)))
[[	0	1	2	3]
	[	4	5	6	7]
	[	8	9	10	11]]

To	get	element	a12	of	A	in	Python,	we	write	A[1,2].	Notice	that	when	we
printed	the	arrays,	there	was	an	extra	[	and	]	around	them.	NumPy	uses	these
brackets	to	indicate	that	the	2D	array	can	be	thought	of	as	a	row	vector	in	which
each	element	is	itself	a	vector.	In	Python-speak,	this	means	that	a	matrix	can	be
thought	of	as	a	list	of	sublists	in	which	each	sublist	is	of	the	same	length.	Of
course,	this	is	exactly	how	we	defined	A	to	begin	with.

We	can	think	of	vectors	as	matrices	with	a	single	row	or	column.	A	column
vector	with	three	elements	is	a	3	×	1	matrix:	it	has	three	rows	and	one	column.
Similarly,	a	row	vector	of	four	elements	acts	like	a	1	×	4	matrix:	it	has	one	row
and	four	columns.	We’ll	make	use	of	this	observation	later.

Tensors
A	scalar	has	no	dimensions,	a	vector	has	one,	and	a	matrix	has	two.	As	you
might	suspect,	we	don’t	need	to	stop	there.	A	mathematical	object	with	more
than	two	dimensions	is	colloquially	referred	to	as	a	tensor.	When	necessary,
we’ll	represent	tensors	like	this:	T,	as	a	sans	serif	capital	letter.

The	number	of	dimensions	a	tensor	has	defines	its	order,	which	is	not	to	be
confused	with	the	order	of	a	matrix.	A	3D	tensor	has	order	3.	A	matrix	is	a
tensor	of	order	2.	A	vector	is	an	order-1	tensor,	and	a	scalar	is	an	order-0	tensor.
When	we	discuss	the	flow	of	data	through	a	deep	neural	network	in	Chapter	9,
we’ll	see	that	many	toolkits	use	tensors	of	order	4	(or	more).

In	Python,	NumPy	arrays	with	three	or	more	dimensions	are	used	to
implement	tensors.	For	example,	we	can	define	an	order-3	tensor	in	Python	as
shown	below:

>>>	t	=	np.arange(36).reshape((3,3,4))
>>>	print(t)



[[[	0	1	2	3]
		[	4	5	6	7]
		[	8	9	10	11]]

	[[12	13	14	15]
		[16	17	18	19]
		[20	21	22	23]]

	[[24	25	26	27]
		[28	29	30	31]
		[32	33	34	35]]]

Here,	we	use	np.arange	to	define	t	to	be	a	vector	of	36	elements	holding	the
numbers	0	.	.	.	35.	Then,	we	immediately	reshape	the	vector	into	a	tensor	of	3	×	3
×	4	elements	(3	×	3	×	4	=	36).	One	way	to	think	of	a	3	×	3	×	4	tensor	is	that	it
contains	a	stack	of	three	3	×	4	images.	If	we	keep	this	in	mind,	the	following
statements	make	sense:

>>>	print(t[0])
[[	0	1	2	3]
	[	4	5	6	7]
	[	8	9	10	11]]
>>>	print(t[0,1])
[4	5	6	7]
>>>	print(t[0,1,2])
6

Asking	for	t[0]	will	return	the	first	3	×	4	image	in	the	stack.	Asking	for	t[0,1],
then,	should	return	the	second	row	of	the	first	image,	which	it	does.	Finally,	we
get	to	an	individual	element	of	t	by	asking	for	the	image	number	(0),	the	row
number	(1),	and	the	element	of	that	row	(2).

Assigning	the	dimensions	of	a	tensor	to	successively	smaller	collections	of
something	is	a	handy	way	to	keep	the	meaning	of	the	dimensions	in	mind.	For
example,	we	can	define	an	order-5	tensor	like	so:

>>>	w	=	np.zeros((9,9,9,9,9))
>>>	w[4,1,2,0,1]
0.0

But,	what	does	asking	for	w[4,1,2,0,1]	mean?	The	exact	meaning	depends	on
the	application.	For	example,	we	might	think	of	w	as	representing	a	bookcase.
The	first	index	selects	the	shelf,	and	the	second	selects	the	book	on	the	shelf.
Then,	the	third	index	selects	the	page	within	the	book,	and	the	fourth	selects	the
line	on	the	page.	The	final	index	selects	the	word	on	the	line.	Therefore,



w[4,1,2,0,1]	is	asking	for	the	second	word	of	the	first	line	of	the	third	page	of	the
second	book	on	the	fifth	shelf	of	the	bookcase,	understood	by	reading	the	indices
from	right	to	left.

The	bookcase	analogy	does	have	its	limitations.	NumPy	arrays	have	fixed
dimensions,	meaning	that	if	w	is	a	bookcase,	there	are	nine	shelves,	and	each
shelf	has	exactly	nine	books.	Likewise,	each	book	has	exactly	nine	pages,	and
each	page	has	nine	lines.	Finally,	each	line	has	precisely	nine	words.	NumPy
arrays	ordinarily	use	contiguous	memory	in	the	computer,	so	the	size	of	each
dimension	is	fixed	when	the	array	is	defined.	Doing	so,	and	selecting	the	specific
data	type,	like	unsigned	integer,	makes	locating	an	element	of	the	array	an
indexing	operation	using	a	simple	formula	to	compute	an	offset	from	a	base
memory	address.	This	is	what	makes	NumPy	arrays	so	much	faster	than	Python
lists.

Any	tensor	of	less	than	order	n	can	be	represented	as	an	order-n	tensor	by
supplying	the	missing	dimensions	of	length	one.	We	saw	an	example	of	this
above	when	I	said	that	an	m-component	vector	could	be	thought	of	as	a	1	×	m	or
an	m	×	1	matrix.	The	order-1	tensor	(the	vector)	is	turned	into	an	order-2	tensor
(matrix)	by	adding	a	missing	dimension	of	length	one.

As	an	extreme	example,	we	can	treat	a	scalar	(order-0	tensor)	as	an	order-5
tensor,	like	this:

>>>	t	=	np.array(42).reshape((1,1,1,1,1))
>>>	print(t)
[[[[[42]]]]]
>>>	t.shape
(1,	1,	1,	1,	1)
>>>	t[0,0,0,0,0]
42

Here,	we	reshape	the	scalar	42	into	an	order-5	tensor	(a	five-dimensional	[5D]
array)	with	length	one	on	each	axis.	Notice	that	NumPy	tells	us	that	the	tensor	t
has	five	dimensions	with	the	[[[[[	and	]]]]]	around	42.	Asking	for	the	shape	of	t
confirms	that	it	is	a	5D	tensor.	Finally,	as	a	tensor,	we	can	get	the	value	of	the
single	element	it	contains	by	specifying	all	the	dimensions	with	t[0,0,0,0,0].	We’ll
often	use	this	trick	of	adding	new	dimensions	of	length	one.	In	fact,	in	NumPy,
there	is	a	way	to	do	this	directly,	which	you’ll	see	when	using	deep	learning
toolkits:

>>>	t	=	np.array([[1,2,3],[4,5,6]])
>>>	print(t)
[[1	2	3]



	[4	5	6]]
>>>	w	=	t[np.newaxis,:,:]
>>>	w.shape
(1,	2,	3)
>>>	print(w)
[[[1	2	3]
		[4	5	6]]]

Here,	we’ve	turned	t,	an	order-2	tensor	(a	matrix),	into	an	order-3	tensor	by
using	np.newaxis	to	create	a	new	axis	of	length	one.	That’s	why	w.shape	returns	(1,2,3)
and	not	(2,3),	as	it	would	for	t.

There	are	analogues	between	tensors	up	to	order-3	and	geometry	that	are
helpful	in	visualizing	the	relationships	between	the	different	orders:

Order	
(dimension
s)

Tensor	name Geometric	name

0 Scalar Point
1 Vector Line
2 Matrix Plane
3 Tensor Volume

Notice,	I	used	tensor	in	its	common	sense	in	the	table.	There	seems	to	be	no
standardized	name	for	an	order-3	tensor.

In	this	section,	we	defined	the	mathematical	objects	of	deep	learning	in
relation	to	multidimensional	arrays,	since	that’s	how	they	are	implemented	in
code.	We’ve	thrown	away	a	lot	of	mathematics	by	doing	this,	but	we’ve
preserved	what	we	need	to	understand	deep	learning.	Let’s	move	on	now	and	see
how	to	use	tensors	in	expressions.

Arithmetic	with	Tensors
The	purpose	of	this	section	is	to	detail	operations	on	tensors,	with	special
emphasis	on	tensors	of	order-1	(vectors)	and	order-2	(matrices).	We’ll	assume
operations	with	scalars	are	well	in	hand	at	this	point.

We’ll	start	with	what	I’m	calling	array	operations,	by	which	I	mean	the
element-wise	operations	that	toolkits	like	NumPy	perform	on	arrays	of	all
dimensions.	Then	we’ll	move	on	to	operations	particular	to	vectors.	This	sets	the
stage	for	the	critical	topic	of	matrix	multiplication.	Finally,	we’ll	discuss	block



matrices.

Array	Operations
The	way	we’ve	used	the	NumPy	toolkit	so	far	has	shown	us	that	all	the	normal
scalar	arithmetic	operations	translate	directly	into	the	world	of	multidimensional
arrays.	This	includes	standard	operations	like	addition,	subtraction,
multiplication,	division,	and	exponentiation,	as	well	as	the	application	of
functions	to	an	array.	In	all	of	these	cases,	the	scalar	operation	is	applied
element-wise	to	each	element	of	the	array.	The	examples	here	will	set	the	tone
for	the	rest	of	this	section	and	will	also	let	us	explore	some	NumPy	broadcasting
rules	that	we	haven’t	called	out	yet.

Let’s	first	define	some	arrays	to	work	with:

>>>	a	=	np.array([[1,2,3],[4,5,6]])
>>>	b	=	np.array([[7,8,9],[10,11,12]])
>>>	c	=	np.array([10,100,1000])
>>>	d	=	np.array([10,11])
>>>	print(a)
[[1	2	3]
	[4	5	6]]
>>>	print(b)
[[	7	8	9]
	[10	11	12]]
>>>	print(c)
[		10	100	1000]
>>>	print(d)
[10	11]

Element-wise	arithmetic	is	straightforward	for	arrays	with	dimensions	that
match:

>>>	print(a+b)
[[	8	10	12]
	[14	16	18]]
>>>	print(a-b)
[[-6	-6	-6]
	[-6	-6	-6]]
>>>	print(a*b)
[[	7	16	27]
	[40	55	72]]
>>>	print(a/b)
[[0.14285714	0.25							0.33333333]
	[0.4								0.45454545	0.5							]]
>>>	print(b**a)



[[							7							64						729]
	[			10000			161051		2985984]]

These	results	are	all	easy	enough	to	interpret;	NumPy	applies	the	desired
operation	to	the	corresponding	elements	of	each	array.	Element-wise
multiplication	on	two	matrices	(a	and	b)	is	often	known	as	the	Hadamard
product.	(You’ll	encounter	this	term	from	time	to	time	in	the	deep	learning
literature.)

The	NumPy	toolkit	extends	the	idea	of	element-wise	operations	into	what	it
calls	broadcasting.	When	broadcasting,	NumPy	applies	rules,	which	we’ll	see
via	examples,	where	one	array	is	passed	over	another	to	produce	a	meaningful
output.

We’ve	already	encountered	a	form	of	broadcasting	when	operating	on	an
array	with	a	scalar.	In	that	case,	the	scalar	value	was	broadcast	to	every	value	of
the	array.

For	our	first	example,	even	though	a	is	a	2	×	3	matrix,	NumPy	allows
operations	on	it	with	c,	a	three-component	vector,	by	applying	broadcasting:

>>>	print(a+c)
[[		11		102	1003]
	[		14		105	1006]]
>>>	print(c*a)
[[		10	200	3000]
	[		40	500	6000]]
>>>	print(a/c)
[[0.1		0.02		0.003]
	[0.4		0.05		0.006]]

Here,	the	three-component	vector,	c,	has	been	broadcast	over	the	rows	of	the	2	×
3	matrix,	a.	NumPy	recognized	that	the	last	dimensions	of	a	and	c	were	both
three,	so	the	vector	could	be	passed	over	the	matrix	to	produce	the	given	output.
When	looking	at	deep	learning	code,	much	of	which	is	in	Python,	you’ll	see
situations	like	this.	At	times,	some	thought	is	necessary,	along	with	some
experimentation	at	the	Python	prompt,	to	understand	what’s	happening.

Can	we	broadcast	d,	a	two-component	vector,	over	a,	a	2	×	3	matrix?	If	we
try	to	do	so	the	same	way	we	broadcast	c	over	a,	we’ll	fail:

>>>	print(a+d)
Traceback	(most	recent	call	last):
		File	"<stdin>",	line	1,	in	<module>
ValueError:	operands	could	not	be	broadcast	together	with	shapes	(2,3)	(2,)



However,	the	broadcasting	rules	for	NumPy	accommodate	dimensions	of
length	one.	The	shape	of	d	is	2;	it’s	a	two-element	vector.	If	we	reshape	d	so	that
it’s	a	2D	array	with	shape	2	×	1,	we’ll	give	NumPy	what	it	needs:

>>>	d	=	d.reshape((2,1))
>>>	d.shape
(2,	1)
>>>	print(a+d)
[[11	12	13]
	[15	16	17]]

We	now	see	that	Numpy	has	added	d	across	the	columns	of	a.
Let’s	return	to	the	world	of	mathematics	and	look	at	operations	on	vectors.

Vector	Operations
Vectors	are	represented	in	code	as	a	collection	of	numbers	that	can	be
interpreted	as	values	along	a	set	of	coordinate	axes.	Here,	we’ll	define	several
operations	that	are	unique	to	vectors.

Magnitude
Geometrically,	we	can	understand	vectors	as	having	a	direction	and	a	length.
They’re	often	drawn	as	arrows,	and	we’ll	see	an	example	of	a	vector	plot	in
Chapter	6.	People	speak	of	the	length	of	a	vector	as	its	magnitude.	Therefore,	the
first	vector	operation	we’ll	consider	is	calculating	its	magnitude.	For	a	vector,	x,
with	n	components,	the	formula	for	its	magnitude	is

In	Equation	5.3,	the	double	vertical	bars	around	the	vector	represent	its
magnitude.	You’ll	often	see	people	use	single	bars	here	as	well.	Single	bars	are
also	used	for	absolute	value;	we	usually	rely	on	context	to	tell	the	difference
between	the	two.

Where	did	Equation	5.3	come	from?	Consider	a	vector	in	2D,	x	=	(x,	y).	If	x
and	y	are	lengths	along	the	x-axis	and	y-axis,	respectively,	we	see	that	x	and	y
form	the	sides	of	a	right	triangle.	The	length	of	the	hypotenuse	of	this	right
triangle	is	the	length	of	the	vector.	Therefore,	according	to	Pythagoras,	and	the
Babylonians	long	before	him,	this	length	is	 ,	which,	generalized	to	n
dimensions,	becomes	Equation	5.3.

Unit	Vectors



Unit	Vectors
Now	that	we	can	calculate	the	magnitude	of	a	vector,	we	can	introduce	a	useful
form	of	a	vector	known	as	a	unit	vector.	If	we	divide	the	components	of	a	vector
by	its	magnitude,	we’re	left	with	a	vector	that	points	in	the	same	direction	as	the
original	vector	but	has	a	magnitude	of	one.	This	is	the	unit	vector.	For	a	vector,
v,	the	unit	vector	in	the	same	direction	is

where	the	hat	over	the	vector	serves	to	identify	it	as	a	unit	vector.	Let’s	see	a
concrete	example.	Our	example	vector	is	v	=	(2,	–4,3).	Therefore,	the	unit	vector
in	the	same	direction	as	v	is

In	code,	we	calculate	the	unit	vector	as	the	following:

>>>	v	=	np.array((2,	-4,	3))
>>>	u	=	v	/	np.sqrt((v*v).sum())
>>>	print(u)
[	0.37139068	-0.74278135	0.55708601	]

Here,	we	make	use	of	the	fact	that	to	square	each	element	of	v,	we	multiply	it	by
itself,	element-wise,	and	then	add	the	components	together	by	calling	sum	to	get
the	magnitude	squared.

Vector	Transpose
We	mentioned	earlier	that	row	vectors	can	be	thought	of	as	1	×	n	matrices,	while
column	vectors	are	n	×	1	matrices.	The	act	of	changing	a	row	vector	into	a
column	vector	and	vice	versa	is	known	as	taking	the	transpose.	We’ll	see	in
Chapter	6	that	the	transpose	also	applies	to	matrices.	Notationally,	we	denote	the
vector	transpose	of	y	as	y⊤.	Therefore,	we	have



Of	course,	we’re	not	limited	to	just	three	components.
In	code,	we	transpose	vectors	in	several	ways.	As	we	saw	above,	we	can	use

reshape	to	reshape	the	vector	into	a	1	×	n	or	n	×	1	matrix.	We	can	also	call	the
transpose	method	on	the	vector,	with	some	care,	or	use	the	transpose	shorthand.
Let’s	see	examples	of	all	of	these	approaches.	First,	let’s	define	a	NumPy	vector
and	see	how	reshape	turns	it	into	a	3	×	1	column	vector	and	a	1	×	3	row	vector,	as
opposed	to	a	plain	vector	of	three	elements:

>>>	v	=	np.array([1,2,3])
>>>	print(v)
[1	2	3]
>>>	print(v.reshape((3,1)))
[[1]
	[2]
	[3]]
>>>	print(v.reshape((1,3)))
[[1	2	3]]

Notice	the	difference	between	the	first	print(v)	and	the	last	after	calling
reshape((1,3)).	The	output	now	has	an	extra	set	of	brackets	around	it	to	indicate	the
leading	dimension	of	one.

Next,	we	apply	the	transpose	operation	on	v:

>>>	print(v.transpose())



[1	2	3]
>>>	print(v.T)
[1	2	3]

Here,	we	see	that	calling	transpose	or	T	changes	nothing	about	v.	This	is	because
the	shape	of	v	is	simply	3,	not	(1,3)	or	(3,1).	If	we	explicitly	alter	v	to	be	a	1	×	3
matrix,	we	see	that	transpose	and	T	have	the	desired	effect:

>>>	v	=	v.reshape((1,3))
>>>	print(v.transpose())
[[1]
	[2]
	[3]]
>>>	print(v.T)
[[1]
	[2]
	[3]]

Here,	v	goes	from	being	a	row	vector	to	a	column	vector,	as	we	expect.	The
lesson,	then,	is	to	be	careful	about	the	actual	dimensionality	of	vectors	in	NumPy
code.	Most	of	the	time,	we	can	be	sloppy,	but	sometimes	we	need	to	be	explicit
and	care	about	the	distinction	between	plain	vectors,	row	vectors,	and	column
vectors.

Inner	Product
Perhaps	the	most	common	vector	operation	is	the	inner	product,	or,	as	it	is
frequently	called,	the	dot	product.	Notationally,	the	inner	product	between	two
vectors	is	written	as

Here,	θ	is	the	angle	between	the	two	vectors	if	they’re	interpreted	geometrically.
The	result	of	the	inner	product	is	a	scalar.	The	a,	b	notation	is	seen	frequently,
though	the	a	•	b	dot	notation	seems	more	common	in	the	deep	learning	literature.
The	a⊤b	matrix	multiplication	notation	explicitly	calls	out	how	to	calculate	the



inner	product,	but	we’ll	wait	until	we	discuss	matrix	multiplication	to	explain	its
meaning.	For	the	present,	the	summation	tells	us	what	we	need	to	know:	the
inner	product	of	two	vectors	of	length	n	is	the	sum	of	the	products	of	the	n
components.

The	inner	product	of	a	vector	with	itself	is	the	magnitude	squared:

a	•	a	=	||a||2

The	inner	product	is	commutative,

a	•	b	=	b	•	a

and	distributive,

a	•	(b	+	c)	=	a	•	b	+	a	•	c

but	not	associative,	as	the	output	of	the	first	inner	product	is	a	scalar,	not	a
vector,	and	multiplying	a	vector	by	a	scalar	is	not	an	inner	product.

Finally,	notice	that	the	inner	product	is	zero	when	the	angle	between	the
vectors	is	90	degrees;	this	is	because	cos	θ	is	zero	(Equation	5.5).	This	means	the
two	vectors	are	perpendicular,	or	orthogonal,	to	each	other.

Let’s	look	at	some	examples	of	the	inner	product.	First,	we’ll	be	literal	and
implement	Equation	5.4	explicitly:

>>>	a	=	np.array([1,2,3,4])
>>>	b	=	np.array([5,6,7,8])
>>>	def	inner(a,b):
...			s	=	0.0
...			for	i	in	range(len(a)):
...					s	+=	a[i]*b[i]
...			return	s
...
>>>	inner(a,b)
70.0

However,	since	a	and	b	are	NumPy	arrays,	we	know	we	can	be	more	efficient:

>>>	(a*b).sum()
70

Or,	probably	most	efficient	of	all,	we’ll	let	NumPy	do	it	for	us	by	using	np.dot:



>>>	np.dot(a,b)
70

You’ll	see	np.dot	frequently	in	deep	learning	code.	It	can	do	more	than	calculate
the	inner	product,	as	we’ll	see	below.

Equation	5.5	tells	us	that	the	angle	between	two	vectors	is

In	the	code,	this	could	be	calculated	as

>>>	A	=	np.sqrt(np.dot(a,a))
>>>	B	=	np.sqrt(np.dot(b,b))
>>>	t	=	np.arccos(np.dot(a,b)/(A*B))
>>>	t*(180/np.pi)
14.335170291600924

This	tells	us	that	the	angle	between	a	and	b	is	approximately	14°	after	converting
t	from	radians.

If	we	consider	vectors	in	3D	space,	we	see	that	the	dot	product	between
orthogonal	vectors	is	zero,	implying	that	the	angle	between	them	is	90°:

>>>	a	=	np.array([1,0,0])
>>>	b	=	np.array([0,1,0])
>>>	np.dot(a,b)
0
>>>	t	=	np.arccos(0)
>>>	t*(180/np.pi)
90.0

This	is	true	because	a	is	a	unit	vector	along	the	x-axis,	b	is	a	unit	vector	along	the
y-axis,	and	we	know	there’s	a	right	angle	between	them.

With	the	inner	product	in	our	toolkit,	let’s	see	how	we	can	use	it	to	project
one	vector	onto	another.

Projection
The	projection	of	one	vector	onto	another	calculates	the	amount	of	the	first
vector	that’s	in	the	direction	of	the	second.	The	projection	of	a	onto	b	is



Figure	5-1	shows	graphically	what	projection	means	for	2D	vectors.

Figure	5-1:	A	graphical	representation	of	the	projection	of	a	onto	b	in	2D

Projection	finds	the	component	of	a	in	the	direction	of	b.	Note	the	projection
of	a	onto	b	is	not	the	same	as	the	projection	of	b	onto	a.

Because	we	use	an	inner	product	in	the	numerator,	we	can	see	that	the
projection	of	a	vector	onto	another	vector	that’s	orthogonal	to	it	is	zero.	No
component	of	the	first	vector	is	in	the	direction	of	the	second.	Think	again	of	the
x-axis	and	y-axis.	The	entire	reason	we	use	Cartesian	coordinates	is	because	the
two	axes,	or	three	in	3D	space,	are	all	mutually	orthogonal;	no	part	of	one	is	in
the	direction	of	the	others.	This	lets	us	specify	any	point,	and	the	vector	from	the
origin	to	that	point,	by	specifying	the	components	along	these	axes.	We’ll	see
this	breaking	up	of	an	object	into	mutually	orthogonal	components	later	when
we	discuss	eigenvectors	and	PCA	in	Chapter	6.

In	code,	calculating	the	projection	is	straightforward:

>>>	a	=	np.array([1,1])
>>>	b	=	np.array([1,0])
>>>	p	=	(np.dot(a,b)/np.dot(b,b))*b
>>>	print(p)
[1.	0.]
>>>	c	=	np.array([-1,1])
>>>	p	=	(np.dot(c,b)/np.dot(b,b))*b
>>>	print(p)
[-1.	-0.]

In	the	first	example,	a	points	in	the	direction	45°	up	from	the	x-axis,	while	b



points	along	the	x-axis.	We’d	then	expect	the	projection	of	a	to	be	along	the	x-
axis,	which	it	is	(p).	In	the	second	example,	c	points	in	the	direction	135°	=	90°	+
45°	from	the	x-axis.	Therefore,	we’d	expect	the	component	of	c	along	b	to	be
along	the	x-axis	but	in	the	opposite	direction	from	b,	which	it	is.

NOTE
Projecting	c	along	b	returned	a	y-axis	component	of	–0.	The	negative
sign	is	a	quirk	of	the	IEEE	754	representation	used	for	floating-point
numbers.	The	significand	(mantissa)	of	the	internal	representation	is
zero,	but	the	sign	can	still	be	specified,	leading	to	an	output	of	negative
zero	from	time	to	time.	For	a	detailed	explanation	of	computer	number
formats,	including	floating-point,	please	see	my	book,	Numbers	and
Computers	(Springer-Verlag,	2017).

Let’s	move	on	now	to	consider	the	outer	product	of	two	vectors.

Outer	Product
The	inner	product	of	two	vectors	returned	a	scalar	value.	The	outer	product	of
two	vectors	instead	returns	a	matrix.	Note	that	unlike	the	inner	product,	the	outer
product	does	not	require	the	two	vectors	to	have	the	same	number	of
components.	Specifically,	for	vectors	a	of	m	components	and	b	of	n	components,
the	outer	product	is	the	matrix	formed	by	multiplying	each	element	of	a	by	each
element	of	b,	as	shown	next.

The	ab⊤	notation	is	how	to	calculate	the	outer	product	via	matrix	multiplication.
Notice	that	this	notation	is	not	the	same	as	the	inner	product,	a⊤b,	and	that	it
assumes	a	and	b	to	be	column	vectors.	No	operator	symbol	is	consistently	used
for	the	outer	product,	primarily	because	it’s	so	easily	specified	via	matrix
multiplication	and	because	it’s	less	common	than	the	dot	product.	However,	⊗
seems	the	most	commonly	used	when	the	outer	product	is	presented	with	a
binary	operator.

In	code,	NumPy	has	kindly	provided	an	outer	product	function	for	us:



>>>	a	=	np.array([1,2,3,4])
>>>	b	=	np.array([5,6,7,8])
>>>	np.dot(a,b)
70
>>>	np.outer(a,b)
array([[	5,	6,	7,	8],
							[10,	12,	14,	16],
							[15,	18,	21,	24],
							[20,	24,	28,	32]])

We	used	a	and	b	above	when	discussing	the	inner	product.	As	expected,	np.dot
gives	us	a	scalar	output	for	a•b.	However,	the	np.outer	function	returns	a	4	×	4
matrix,	where	we	see	that	each	row	is	vector	b	multiplied	successively	by	each
element	of	vector	a,	first	1,	then	2,	then	3,	and	finally	4.	Therefore,	each	element
of	a	has	multiplied	each	element	of	b.	The	resulting	matrix	is	4	×	4	because	both	a
and	b	have	four	elements.

THE	CARTESIAN	PRODUCT

There	is	a	direct	analogue	between	the	outer	product	of	two	vectors	and	the
Cartesian	product	of	two	sets,	A	and	B.	The	Cartesian	product	is	a	new	set,
each	element	of	which	is	one	of	the	possible	pairings	of	elements	from	A
and	B.	So,	if	A={1,2,3,4}	and	B={5,6,7,8},	the	Cartesian	product	can	be
written	as

Here,	we	see	that	if	we	replace	each	entry	with	the	product	of	the	pair,	we
get	the	corresponding	vector	product	we	saw	above	with	NumPy	np.outer.
Also,	note	that	×	is	typically	used	for	the	Cartesian	product	when	working
with	sets.

The	ability	of	the	outer	product	to	mix	all	combinations	of	its	inputs	has	been



used	in	deep	learning	for	neural	collaborative	filtering	and	visual	question
answering	applications.	These	functions	are	performed	by	advanced	networks
that	make	recommendations	or	answer	text	questions	about	an	image.	The	outer
product	appears	as	a	mixing	of	two	different	embedding	vectors.	Embeddings	are
the	vectors	generated	by	lower	layers	of	a	network,	for	example,	the	next	to	last
fully	connected	layer	before	the	softmax	layer’s	output	of	a	traditional
convolutional	neural	network	(CNN).	The	embedding	layer	is	usually	viewed	as
having	learned	a	new	representation	of	the	network	input.	It	can	be	thought	of	as
mapping	complex	inputs,	like	images,	to	a	reduced	space	of	several	hundred	to
several	thousands	of	dimensions.

Cross	Product
Our	final	vector-vector	operator	is	the	cross	product.	This	operator	is	only
defined	for	3D	space	(ℝ3).	The	cross	product	of	a	and	b	is	a	new	vector	that	is
perpendicular	to	the	plane	containing	a	and	b.	Note,	this	does	not	imply	that	a
and	b	are	themselves	perpendicular.	The	cross	product	is	defined	as

where	 	is	a	unit	vector	and	θ	is	the	angle	between	a	and	b.	The	direction	of	 	is
given	by	the	right-hand	rule.	With	your	right	hand,	point	your	index	finger	in	the
direction	of	a	and	your	middle	finger	in	the	direction	of	b.	Then,	your	thumb	will
be	pointing	in	the	direction	of	 .	Equation	5.6	gives	the	actual	ℝ3	components	of
the	cross	product	vector.

NumPy	implements	the	cross	product	via	np.cross:

>>>	a	=	np.array([1,0,0])
>>>	b	=	np.array([0,1,0])
>>>	print(np.cross(a,b))
[0	0	1]
>>>	c	=	np.array([1,1,0])
>>>	print(np.cross(a,c))
[0	0	1]

In	the	first	example,	a	points	along	the	x-axis	and	b	along	the	y-axis.
Therefore,	we	expect	the	cross	product	to	be	perpendicular	to	these	axes,	and	it
is:	the	cross	product	points	along	the	z-axis.	The	second	example	shows	that	it
doesn’t	matter	if	a	and	b	are	perpendicular	to	each	other.	Here,	c	is	at	a	45°	angle



to	the	x-axis,	but	a	and	c	are	still	in	the	xy-plane.	Therefore,	the	cross	product	is
still	along	the	z-axis.

The	definition	of	the	cross	product	involves	sin	θ,	while	the	inner	product
uses	cos	θ.	The	inner	product	is	zero	when	the	two	vectors	are	orthogonal	to
each	other.	The	cross	product,	on	the	other	hand,	is	zero	when	the	two	vectors
are	in	the	same	direction	and	is	maximized	when	the	vectors	are	perpendicular.
The	second	NumPy	example	above	works	out	because	the	magnitude	of	c	is	
and	sin	 .	As	a	result,	the	 	factors	cancel	out	to	leave	a
magnitude	of	1	for	the	cross	product	because	a	is	a	unit	vector.

The	cross	product	is	widely	used	in	physics	and	other	sciences	but	is	less
often	used	in	deep	learning	because	of	its	restriction	to	3D	space.	Nontheless,
you	should	be	familiar	with	it	if	you’re	going	to	tackle	the	deep	learning
literature.

This	concludes	our	look	at	vector-vector	operations.	Let’s	leave	the	1D
world	and	move	on	to	consider	the	most	important	operation	for	all	deep
learning:	matrix	multiplication.

Matrix	Multiplication
In	the	previous	section,	we	saw	how	to	multiply	two	vectors	in	various	ways:
Hadamard	product,	inner	(dot)	product,	outer	product,	and	cross	product.	In	this
section,	we’ll	investigate	multiplication	of	matrices,	recalling	that	row	and
column	vectors	are	themselves	matrices	with	one	row	or	column.

Properties	of	Matrix	Multiplication
We’ll	define	the	matrix	product	operation	shortly,	but,	before	we	do,	let’s	look	at
the	properties	of	matrix	multiplication.	Let	A,	B,	and	C	be	matrices.	Then,
following	the	algebra	convention	of	multiplying	symbols	by	placing	them	next
to	each	other,

(AB)C	=	A(BC)

meaning	matrix	multiplication	is	associative.	Second,	matrix	multiplication	is
distributive:



However,	in	general,	matrix	multiplication	is	not	commutative:

AB	≠	BA

As	you	can	see	in	Equation	5.8,	matrix	multiplication	over	addition	from	the
right	produces	a	different	result	than	matrix	multiplication	over	addition	from
the	left,	as	shown	in	Equation	5.7.	This	explains	why	we	showed	both	Equation
5.7	and	Equation	5.8;	matrix	multiplication	can	be	performed	from	the	left	or	the
right,	and	the	result	will	be	different.

How	to	Multiply	Two	Matrices
To	calculate	AB,	knowing	that	A	must	be	on	the	left	of	B,	we	first	need	to	verify
that	the	matrices	are	compatible.	It’s	only	possible	to	multiply	two	matrices	if
the	number	of	columns	in	A	is	the	same	as	the	number	of	rows	in	B.	Therefore,
if	A	is	an	n	×	m	matrix	and	B	is	an	m	×	k	matrix,	then	the	product,	AB,	can	be
found	and	will	be	a	new	n	×	k	matrix.

To	calculate	the	product,	we	perform	a	series	of	inner	product	multiplications
between	the	row	vectors	of	A	and	the	column	vectors	of	B.	Figure	5-2	illustrates
the	process	for	a	3	×	3	matrix	A	and	a	3	×	2	matrix	B.

Figure	5-2:	Multiplying	a	3	×	3	matrix	by	a	3	×	2	matrix

In	Figure	5-2,	the	first	row	of	the	output	matrix	is	found	by	computing	the
inner	product	of	the	first	row	of	A	with	each	of	the	columns	of	B.	The	first



element	of	the	output	matrix	is	shown	where	the	first	row	of	A	is	multiplied	by
the	first	column	of	B.	The	remaining	first	row	of	the	output	matrix	is	found	by
repeating	the	dot	product	of	the	first	row	of	A	by	the	remaining	column	of	B.

Let’s	present	a	worked	example	with	actual	numbers	for	the	matrices	in
Figure	5-2:

Notice,	AB	is	defined,	but	BA	is	not,	because	we	can’t	multiply	a	3	×	2
matrix	by	a	3	×	3	matrix.	The	number	of	columns	in	B	needs	to	be	the	same	as
the	number	of	rows	in	A.

Another	way	to	think	of	matrix	multiplication	is	by	considering	what	goes
into	making	up	each	of	the	output	matrix	elements.	For	example,	if	A	is	n	×	m
and	B	is	m	×	p,	we	know	that	the	matrix	product	exists	as	an	n	×	p	matrix,	C.	We
find	the	output	elements	by	computing

for	i	=	0,	.	.	.	,	n	−	1	and	j	=	0,	.	.	.	,	p	−	1.	In	the	example	above,	we	find	c21	by
summing	the	products	a20b01	+	a21b11	+	a22b21,	which	fits	Equation	5.9	with	i	=
2,	j	=	1	and	k	=	0,	1,	2.

Equation	5.9	tells	us	how	to	find	a	single	output	matrix	element.	If	we	loop
over	i	and	j,	we	can	find	the	entire	output	matrix.	This	implies	a	straightforward
implementation	of	matrix	multiplication:

def	matrixmul(A,B):



				I,K	=	A.shape
				J	=	B.shape[1]
				C	=	np.zeros((I,J),	dtype=A.dtype)
				for	i	in	range(I):
								for	j	in	range(J):
												for	k	in	range(K):
																C[i,j]	+=	A[i,k]*B[k,j]
				return	C

We’ll	assume	the	arguments,	A	and	B,	are	compatible	matrices.	We	set	the
number	of	rows	(I)	and	columns	(J)	of	the	output	matrix,	C,	and	use	them	as	the
loop	limits	for	the	elements	of	C.	We	create	the	output	matrix,	C,	and	give	it	the
same	data	type	as	A.	Then	starts	a	triple	loop.	The	loop	over	i	covers	all	the	rows
of	the	output.	The	next	loop,	over	j,	covers	the	columns	of	the	current	row,	and
the	innermost	loop,	over	k,	covers	the	combining	of	elements	from	A	and	B,	as	in
Equation	5.9.	When	all	loops	finish,	we	return	the	matrix	product,	C.

The	function	matrixmul	works.	It	finds	the	matrix	product.	However,	in	terms
of	implementation,	it’s	quite	naive.	Advanced	algorithms	exist,	as	do	many
optimizations	of	the	naive	approach	when	using	compiled	code.	As	we’ll	see
below,	NumPy	supports	matrix	multiplication	and	internally	uses	highly
optimized	compiled	code	libraries	that	far	outstrip	the	performance	of	the	simple
code	above.

Matrix	Notation	for	Inner	and	Outer	Products
We	are	now	in	a	position	to	understand	the	matrix	notation	above	for	the	inner
product,	a⊤b,	and	the	outer	product,	ab⊤,	of	two	vectors.	In	the	first	case,	we
have	a	1	×	n	row	vector,	because	of	the	transpose,	and	an	n	×	1	column	vector.
The	algorithm	says	to	form	the	inner	product	of	the	row	vector	and	the	column
vector	to	arrive	at	an	output	matrix	that	is	1	×	1,	that	is,	a	single	scalar	number.
Notice	that	there	must	be	n	components	in	both	a	and	b.

For	the	outer	product,	we	have	an	n	×	1	column	vector	on	the	left	and	a	1	×	m
row	vector	on	the	right.	Therefore,	we	know	the	output	matrix	is	n	×	m.	If	m	=	n,
we’ll	have	an	output	matrix	that’s	n	×	n.	A	matrix	with	as	many	rows	as	it	has
columns	is	a	square	matrix.	These	have	special	properties,	some	of	which	we’ll
see	in	Chapter	6.

To	find	the	outer	product	of	two	vectors	by	matrix	multiplication,	we
multiply	each	element	of	the	rows	of	a	by	each	of	the	columns	of	b	as	a	row
vector,



where	each	column	of	b⊤,	a	single	scalar	number,	is	passed	down	the	rows	of	a,
thereby	forming	each	possible	product	between	the	elements	of	the	two	vectors.

We’ve	seen	how	to	perform	matrix	multiplication	manually.	Let’s	take	a
look	now	at	how	NumPy	supports	matrix	multiplication.

Matrix	Multiplication	in	NumPy
NumPy	provides	two	different	functions	that	we	can	use	for	matrix
multiplication.	The	first,	we’ve	seen	already,	np.dot,	though	we’ve	only	used	it	so
far	to	compute	inner	products	of	vectors.	The	second	is	np.matmul,	which	is	also
called	when	using	the	@	binary	operator	available	in	Python	3.5	and	later.	Matrix
multiplication	with	either	function	works	as	we	expect.	However,	NumPy
sometimes	treats	1D	arrays	differently	from	row	or	column	vectors.

We	can	use	shape	to	decide	if	a	NumPy	array	is	a	1D	array,	a	row	vector,	or	a
column	vector,	as	shown	in	Listing	5-1:

>>>	av	=	np.array([1,2,3])
>>>	ar	=	np.array([[1,2,3]])
>>>	ac	=	np.array([[1],[2],[3]])
>>>	av.shape
(3,)
>>>	ar.shape
(1,	3)
>>>	ac.shape
(3,	1)

Listing	5-1:	NumPy	vectors

Here,	we	see	that	a	1D	array	with	three	elements,	av,	has	a	shape	different	from	a
row	vector	with	three	components,	ar,	or	a	column	vector	of	three	components,
ac.	However,	each	of	these	arrays	contains	the	same	three	integers:	1,	2,	and	3.

Let’s	run	an	experiment	to	help	us	understand	how	NumPy	implements
matrix	multiplication.	We’ll	test	np.dot,	but	the	results	are	the	same	if	we	use
np.matmul	or	the	@	operator.	We	need	a	collection	of	vectors	and	matrices	to	work



with.	We’ll	then	apply	combinations	of	them	to	np.dot	and	consider	the	output,
which	may	very	well	be	an	error	if	the	operation	is	undefined	for	that
combination	of	arguments.

Let’s	create	the	arrays,	vectors,	and	matrices	we’ll	need:

a1	=	np.array([1,2,3])
ar	=	np.array([[1,2,3]])
ac	=	np.array([[1],[2],[3]])
b1	=	np.array([1,2,3])
br	=	np.array([[1,2,3]])
bc	=	np.array([[1],[2],[3]])
A	=	np.array([[1,2,3],[4,5,6],[7,8,9]])
B	=	np.array([[9,8,7],[6,5,4],[3,2,1]])

The	shape	of	the	objects	should	be	discernible	from	the	definition,	if	we	keep	the
results	of	Listing	5-1	in	mind.	We’ll	also	define	two	3	×	3	matrices,	A	and	B.

Next,	we’ll	define	a	helper	function	to	wrap	the	call	to	NumPy	so	we	can
trap	any	errors:

def	dot(a,b):
				try:
								return	np.dot(a,b)
				except:
								return	"fails"

This	function	calls	np.dot	and	returns	the	word	fails	if	the	call	doesn’t	succeed.
Table	5-1	shows	the	output	of	dot	for	the	given	combinations	of	the	inputs
defined	above.

Table	5-1	illustrates	how	NumPy	sometimes	treats	1D	arrays	differently
from	row	or	column	vectors.	See	the	difference	in	Table	5-1	for	a1,A	versus	ar,A
and	A,ac.	The	output	of	A,ac	is	what	we’d	expect	to	see	mathematically,	with	the
column	vector	ac	multiplied	on	the	left	by	A.

Is	there	any	real	difference	between	np.dot	and	np.matmul?	Yes,	some.	For	1D
and	2D	arrays,	there	is	no	difference.	However,	there	is	a	difference	between
how	each	function	handles	arrays	greater	than	two	dimensions,	although	we
won’t	work	with	those	here.	Also,	np.dot	allows	one	of	its	arguments	to	be	a
scalar	and	multiplies	each	element	of	the	other	argument	by	it.	Multiplying	by	a
scalar	with	np.matmul	throws	an	error.

Table	5-1:	Results	of	Applying	dot	or	matmul	to	Different	Types	of	Arguments

Arguments Result	of	np.dot	or	np.matmul
a1,b1 14	(scalar)



a1,b1 14	(scalar)
a1,br fails
a1,bc [14]	(1	vector)
ar,b1 [14]	(1	vector)
ar,br fails
ar,bc [14]	(1	×	1	matrix)
ac,b1 fails
ac,br

ac,bc fails
A,a1 [14	32	50]	(3	vector)
A,ar fails
A,ac

a1,A [30	36	42]	(3	vector)
ar,A [30	36	42]	(1	×	3	matrix)
ac,A fails
A,B

Kronecker	Product
The	final	form	of	matrix	multiplication	we’ll	discuss	is	the	Kronecker	product	or
matrix	direct	product	of	two	matrices.	When	computing	the	matrix	product,	we
mixed	individual	elements	of	the	matrices,	multiplying	them	together.	For	the
Kronecker	product,	we	multiply	the	elements	of	one	matrix	by	an	entire	matrix
to	produce	an	output	matrix	that	is	larger	than	the	input	matrices.	The	Kronecker
product	is	also	a	convenient	place	to	introduce	the	idea	of	a	block	matrix,	or	a
matrix	constructed	from	smaller	matrices	(the	blocks).

For	example,	if	we	have	three	matrices

we	can	define	a	block	matrix,	M,	as	the	following.



where	each	element	of	M	is	a	smaller	matrix	stacked	on	top	of	each	other.
We	can	most	easily	define	the	Kronecker	product	using	a	visual	example

involving	a	block	matrix.	The	Kronecker	product	of	A	and	B,	typically	written	as
A	⊗	B,	is

for	A,	an	m	×	n	matrix.	This	is	a	block	matrix	because	of	B,	so,	when	written	out
completely,	the	Kronecker	product	results	in	a	matrix	larger	than	either	A	or	B.
Note,	unlike	matrix	multiplication,	the	Kronecker	product	is	defined	for
arbitrarily	sized	A	and	B	matrices.	For	example,	using	A	and	B	from	Equation
5.10,	the	Kronecker	product	is

Notice	above	that	we	used	⊗	for	the	Kronecker	product.	This	is	the
convention,	though	the	symbol	⊗	is	sometimes	abused	and	is	used	for	other
things	too.	We	used	it	for	the	outer	product	of	two	vectors,	for	example.	NumPy
supports	the	Kronecker	product	via	np.kron.

Summary



Summary
In	this	chapter,	we	introduced	the	mathematical	objects	used	in	deep	learning:
scalars,	vector,	matrices,	and	tensors.	We	then	explored	arithmetic	with	tensors,
in	particular	with	vectors	and	matrices.	We	saw	how	to	perform	operations	on
these	objects,	both	mathematically	and	in	code	via	NumPy.

Our	exploration	of	linear	algebra	is	not	complete,	however.	In	the	next
chapter,	we’ll	dive	deeper	into	matrices	and	their	properties	to	discuss	just	a
handful	of	the	important	things	that	we	can	do	with	or	know	about	them.



6
MORE	LINEAR	ALGEBRA

In	this	chapter,	we’ll	continue	our	exploration	of	linear	algebra	concepts.	Some
of	these	concepts	are	only	tangentially	related	to	deep	learning,	but	they’re	the
sort	of	math	you’ll	eventually	encounter.	Think	of	this	chapter	as	assumed
background	knowledge.

Specifically,	we’ll	learn	more	about	the	properties	of	and	operations	on
square	matrices,	introducing	terms	you’ll	encounter	in	the	deep	learning
literature.	After	that,	I’ll	introduce	the	ideas	behind	the	eigenvalues	and
eigenvectors	of	a	square	matrix	and	how	to	find	them.	Next,	we’ll	explore	vector
norms	and	other	ways	of	measuring	distance	that	are	often	encountered	in	deep
learning.	At	that	point,	I’ll	introduce	the	important	concept	of	a	covariance
matrix.

We’ll	conclude	the	chapter	by	demonstrating	principal	component	analysis
(PCA)	and	singular	value	decomposition	(SVD).	These	frequently	used
approaches	depend	heavily	on	the	concepts	and	operators	introduced	throughout
the	chapter.	We	will	see	what	PCA	is,	how	to	do	it,	and	what	it	can	buy	us	from
a	machine	learning	perspective.	Similarly,	we	will	work	with	SVD	and	see	how
we	can	use	it	to	implement	PCA	as	well	as	compute	the	pseudoinverse	of	a
rectangular	matrix.

Square	Matrices
Square	matrices	occupy	a	special	place	in	the	world	of	linear	algebra.	Let’s
explore	them	in	more	detail.	The	terms	used	here	will	show	up	often	in	deep
learning	and	other	areas.



learning	and	other	areas.

Why	Square	Matrices?
If	we	multiply	a	matrix	by	a	column	vector,	we’ll	get	another	column	vector	as
output:

Interpreted	geometrically,	the	2	×	4	matrix	has	mapped	the	4	×	1	column
vector,	a	point	in	ℝ4,	to	a	new	point	in	ℝ2.	The	mapping	is	linear	because	the
point	values	are	only	being	multiplied	by	the	elements	of	the	2	×	4	matrix;	there
are	no	nonlinear	operations,	such	as	raising	the	components	of	the	vector	to	a
power,	for	example.

Viewed	this	way,	we	can	use	a	matrix	to	transform	points	between	spaces.	If
the	matrix	is	square,	say,	n	×	n,	the	mapping	is	from	ℝn	back	to	ℝn.	For
example,	consider

where	the	point	(11,	12,	13)	is	mapped	to	the	point	(74,	182,	209),	both	in	ℝ3.
Using	a	matrix	to	map	points	from	one	space	to	another	makes	it	possible	to

rotate	a	set	of	points	about	an	axis	by	using	a	rotation	matrix.	For	simple
rotations,	we	can	define	matrices	in	2D,

and	in	3D,

Rotations	are	by	an	angle,	θ,	and	for	3D,	about	the	x-,	y-,	or	z-axis,	as	indicated
by	the	subscript.



Using	a	matrix,	we	can	create	an	affine	transformation.	An	affine
transformation	maps	a	set	of	points	into	another	set	of	points	so	that	points	on	a
line	in	the	original	space	are	still	on	a	line	in	the	mapped	space.	The
transformation	is

y	=	Ax	+	b

The	affine	transform	combines	a	matrix	transform,	A,	with	a	translation,	b,	to
map	a	vector,	x,	to	a	new	vector,	y.	We	can	combine	this	operation	into	a	single
matrix	multiplication	by	putting	A	in	the	upper-left	corner	of	the	matrix	and
adding	b	as	a	new	column	on	the	right.	A	row	of	all	zeros	at	the	bottom	with	a
single	1	in	the	rightmost	column	completes	the	augmented	transformation
matrix.	For	an	affine	transformation	matrix

and	translation	vector

we	get

This	form	maps	a	point,	(x,	y),	to	a	new	point,	(x′,	y′).
This	maneuver	is	identical	to	the	bias	trick	sometimes	used	when

implementing	a	neural	network	to	bury	the	bias	in	an	augmented	weight	matrix
by	including	an	extra	feature	vector	input	set	to	1.	In	fact,	we	can	view	a
feedforward	neural	network	as	a	series	of	affine	transformations,	where	the
transformation	matrix	is	the	weight	matrix	between	the	layers,	and	the	bias
vector	provides	the	translation.	The	activation	function	at	each	layer	alters	the
otherwise	linear	relationship	between	the	layers.	It	is	this	nonlinearity	that	lets
the	network	learn	a	new	way	to	map	inputs	so	that	the	final	output	reflects	the
functional	relationship	the	network	is	designed	to	learn.

We	use	square	matrices,	then,	to	map	points	from	one	space	back	into	the
same	space,	for	example	to	rotate	them	about	an	axis.	Let’s	look	now	at	some
special	properties	of	square	matrices.



special	properties	of	square	matrices.

Transpose,	Trace,	and	Powers
Chapter	5	showed	us	the	vector	transpose	to	move	between	column	and	row
vectors.	The	transpose	operation	is	not	restricted	to	vectors.	It	works	for	any
matrix	by	flipping	the	rows	and	columns	along	the	main	diagonal.	For	example,

The	transpose	is	formed	by	flipping	the	indices	of	the	matrix	elements:

aij	←	aij,	i	=	0,	1,	.	.	.	,	n	−	1,	j	=	0,	1,	.	.	.	,	m	–	1

This	changes	an	n	×	m	matrix	into	an	m	×	n	matrix.	Notice	that	the	order	of	a
square	matrix	remains	the	same	under	the	transpose	operation,	and	the	values	on
the	main	diagonal	don’t	change.

In	NumPy,	you	can	call	the	transpose	method	on	an	array,	but	the	transpose	is
so	common	that	a	shorthand	notation	(.T)	also	exists.	For	example,

>>>	import	numpy	as	np
>>>	a	=	np.array([[1,2,3],[4,5,6],[7,8,9]])
>>>	print(a)
[[1	2	3]
	[4	5	6]
	[7	8	9]]
>>>	print(a.transpose())
[[1	4	7]
	[2	5	8]
	[3	6	9]]
>>>	print(a.T)
[[1	4	7]
	[2	5	8]
	[3	6	9]]

The	trace	is	another	common	operation	applied	to	square	matrices:

As	an	operator,	the	trace	has	certain	properties.	For	example,	it’s	linear:



tr(A	+	B)	=	trA	+	trB

It’s	also	true	that	tr(A)	=	tr(AT)	and	tr(AB)	=	tr(BA).
NumPy	uses	np.trace	to	quickly	calculate	the	trace	of	a	matrix	and	np	.diag	to

return	the	diagonal	elements	of	a	matrix	as	a	1D	array,

(a00,	a11,	.	.	.	,	an−1,n−1)

for	an	n	×	n	or	n	×	m	matrix.
A	matrix	doesn’t	need	to	be	square	for	NumPy	to	return	the	elements	along

its	diagonal.	And	although	mathematically	the	trace	generally	only	applies	to
square	matrices,	NumPy	will	calculate	the	trace	of	any	matrix,	returning	the	sum
of	the	diagonal	elements:

>>>	b	=	np.array([[1,2,3,4],[5,6,7,8]])
>>>	print(b)
[[1	2	3	4]
	[5	6	7	8]]
>>>	print(np.diag(b))
[1	6]
>>>	print(np.trace(b))
7

Lastly,	you	can	multiply	a	square	matrix	by	itself,	implying	that	you	can
raise	a	square	matrix	to	an	integer	power,	n,	by	multiplying	itself	n	times.	Note
that	this	is	not	the	same	as	raising	the	elements	of	the	matrix	to	a	power.	For
example,

The	matrix	power	follows	the	same	rules	as	raising	any	number	to	a	power:

AnAm	=	An+m

(An)m	=	Anm

for	 	(positive	integers)	and	where	A	is	a	square	matrix.



NumPy	provides	a	function	to	compute	the	power	of	a	square	matrix	more
efficiently	than	repeated	calls	to	np.dot:

>>>	from	numpy.linalg	import	matrix_power
>>>	a	=	np.array([[1,2],[3,4]])
>>>	print(matrix_power(a,2))
[[	7	10]
	[15	22]]
>>>	print(matrix_power(a,10))
[[	4783807	6972050]
	[10458075	15241882]]

Now	let’s	consider	some	special	square	matrices	that	you’ll	encounter	from
time	to	time.

Special	Square	Matrices
Many	square	(and	nonsquare)	matrices	have	received	special	names.	Some	are
rather	obvious,	like	matrices	that	are	all	zero	or	one,	which	are	called	zeros
matrices	and	ones	matrices,	respectively.	NumPy	uses	these	extensively:

>>>	print(np.zeros((3,5)))
[[0.	0.	0.	0.	0.]
	[0.	0.	0.	0.	0.]
	[0.	0.	0.	0.	0.]]
>>>	print(np.ones(3,3))
[[1.	1.	1.]
	[1.	1.	1.]
	[1.	1.	1.]]

Note	that	you	can	find	a	matrix	of	any	constant	value,	c,	by	multiplying	the	ones
matrix	by	c.

Notice	above	that	NumPy	defaults	to	matrices	of	64-bit	floating-point
numbers	corresponding	to	a	C-language	type	of	double.	See	Table	1-1	on	page	6
for	a	list	of	possible	numeric	data	types.	You	can	specify	the	desired	data	type
with	the	dtype	keyword.	In	pure	mathematics,	we	don’t	care	much	about	data
types,	but	to	work	in	deep	learning,	you	need	to	pay	attention	to	avoid	defining
arrays	that	are	far	more	memory-hungry	than	needed.	Many	deep	learning
models	are	happy	with	arrays	of	32-bit	floats,	which	use	half	the	memory	per
element	than	the	NumPy	default.	Also,	many	toolkits	make	use	of	new	or
previously	seldom-used	data	types,	like	16-bit	floats,	to	allow	for	even	better	use
of	memory.	NumPy	does	support	16-bit	floats	by	specifying	float16	as	the	dtype.

The	Identity	Matrix



The	Identity	Matrix
By	far,	the	most	important	special	matrix	is	the	identity	matrix.	This	is	a	square
matrix	with	all	ones	on	the	diagonal:

The	identity	matrix	acts	like	the	number	1	when	multiplying	a	matrix.
Therefore,

AI	=	IA	=	A

for	an	n	×	n	square	matrix	A	and	an	n	×	n	identity	matrix	I.	When	necessary,
we’ll	add	a	subscript	to	indicate	the	order	of	the	identity	matrix,	for	example,	In.

NumPy	uses	np.identity	or	np.eye	to	generate	identity	matrices	of	a	given	size:

>>>	a	=	np.array([[1,2],[3,4]])
>>>	i	=	np.identity(2)
>>>	print(i)
[[1.	0.]
	[0.	1.]]
>>>	print(a	@	i)
[[1.	2.]
	[3.	4.]]

Look	carefully	at	the	example	above.	Mathematically,	we	said	that
multiplication	of	a	square	matrix	by	the	identity	matrix	of	the	same	order	returns
the	matrix.	NumPy,	however,	did	something	we	might	not	want.	Matrix	a	was
defined	with	integer	elements,	so	it	has	a	data	type	of	int64,	the	NumPy	default
for	integers.	However,	since	we	didn’t	explicitly	provide	np.identity	with	a	data
type,	NumPy	defaulted	to	a	64-bit	float.	Therefore,	matrix	multiplication	(@)
between	a	and	i	returned	a	floating-point	version	of	a.	This	subtle	change	of	data
type	might	be	important	for	later	calculations,	so,	again,	we	need	to	pay	attention
to	data	types	when	using	NumPy.

It	doesn’t	matter	if	you	use	np.identity	or	np.eye.	In	fact,	internally,	np.identity	is
just	a	wrapper	for	np.eye.

Triangular	Matrices



Triangular	Matrices
Occasionally,	you’ll	hear	about	triangular	matrices.	There	are	two	kinds:	upper
and	lower.	As	you	may	intuit	from	the	name,	an	upper	triangular	matrix	is	one
with	nonzero	elements	in	the	part	on	or	above	the	main	diagonal,	whereas	a
lower	triangular	matrix	only	has	elements	on	or	below	the	main	diagonal.	For
example,

is	an	upper	triangular	matrix,	whereas

is	a	lower	triangular	matrix.	A	matrix	that	has	elements	only	on	the	main
diagonal	is,	not	surprisingly,	a	diagonal	matrix.

NumPy	has	two	functions,	np.triu	and	np.tril,	to	return	the	upper	or	lower
triangular	part	of	the	given	matrix,	respectively.	So,

>>>	a	=	np.arange(16).reshape((4,4))
>>>	print(a)
[[	0		1		2		3]
	[	4		5		6		7]
	[	8		9	10	11]
	[12	13	14	15]]
>>>	print(np.triu(a))
[[	0	1		2		3]
	[	0	5		6		7]
	[	0	0	10	11]
	[	0	0	0	15]]
>>>	print(np.tril(a))
[[	0		0		0		0]
	[	4		5		0		0]
	[	8		9	10		0]
	[12	13	14	15]]

We	don’t	frequently	use	triangular	matrices	in	deep	learning,	but	we	do	use
them	in	linear	algebra,	in	part	to	compute	determinants,	to	which	we	now	turn.



Determinants
We	can	think	of	the	determinant	of	a	square	matrix,	n	×	n,	as	a	function	mapping
square	matrices	to	a	scalar.	The	primary	use	of	the	determinant	in	deep	learning
is	to	compute	the	eigenvalues	of	a	matrix.	We’ll	see	what	that	means	later	in	this
chapter,	but	for	now	think	of	eigenvalues	as	special	scalar	values	associated	with
a	matrix.	The	determinant	also	tells	us	something	about	whether	or	not	a	matrix
has	an	inverse,	as	we’ll	also	see	below.	Notationally,	we	write	the	determinant	of
a	matrix	with	vertical	bars.	For	example,	if	A	is	a	3	×	3	matrix,	we	write	the
determinant	as

where	we	state	explicitly	that	the	value	of	the	determinant	is	a	scalar	(element	of
ℝ).	All	square	matrices	have	a	determinant.	For	now,	let’s	consider	some	of	the
properties	of	the	determinant:

1.	 If	any	row	or	column	of	A	is	zero,	then	det(A)	=	0.

2.	 If	any	two	rows	of	A	are	identical,	then	det(A)	=	0.

3.	 If	A	is	an	upper	or	lower	triangular,	then	det	 .

4.	 If	A	is	a	diagonal	matrix,	then	det	 .

5.	 The	determinant	of	the	identity	matrix,	regardless	of	size,	is	1.

6.	 The	determinant	of	a	product	of	matrices	is	the	product	of	the	determinants,
det(AB)	=	det(A)det(B).

7.	 det(A)	=	det(A⊤).

8.	 det(An)	=	det(A)n.

Property	7	indicates	that	the	transpose	operation	does	not	change	the	value	of	a
determinant.	Property	8	is	a	consequence	of	Property	6.

We	have	multiple	ways	we	can	calculate	the	determinant	of	a	square	matrix.



We’ll	examine	only	one	way	here,	which	involves	using	a	recursive	formula.	All
recursive	formulas	apply	themselves,	just	as	recursive	functions	in	code	call
themselves.	The	general	idea	is	that	each	recursion	works	on	a	simpler	version	of
the	problem,	which	can	be	combined	to	return	the	solution	to	the	larger	problem.

For	example,	we	can	calculate	the	factorial	of	an	integer,

n!	=	n(n	−	1)(n	−	2)(n	−	3)	.	.	.	1

recursively	if	we	notice	the	following:

The	first	statement	says	that	the	factorial	of	n	is	n	times	the	factorial	of	(n	−
1).	The	second	statement	says	that	the	factorial	of	zero	is	one.	The	recursion	is
the	first	statement,	but	this	recursion	will	never	end	without	some	condition	that
returns	a	value.	That’s	the	point	of	the	second	statement,	the	base	case:	it	says
the	recursion	ends	when	we	get	to	zero.

This	might	be	clearer	in	code.	We	can	define	the	factorial	like	so:

def	factorial(n):
				if	(n	==	0):
								return	1
				return	n*factorial(n-1)

Notice	that	factorial	calls	itself	on	the	argument	minus	one,	unless	the
argument	is	zero,	in	which	case	it	immediately	returns	one.	The	code	works
because	of	the	Python	call	stack.	The	call	stack	keeps	track	of	all	the
computations	of	n*factorial(n-1).	When	we	encounter	the	base	case,	all	the	pending
multiplications	are	done,	and	we	return	the	final	value.

To	calculate	determinants	recursively,	then,	we	need	a	recursion	statement,
something	that	defines	the	determinant	of	a	matrix	in	terms	of	simpler
determinants.	We	also	need	a	base	case	that	gives	us	a	definitive	value.	For
determinants,	the	base	case	is	when	we	get	to	a	1	×	1	matrix.	For	any	1	×	1
matrix,	A,	we	have

det(A)	=	a00

meaning	the	determinant	of	a	1	×	1	matrix	is	the	single	value	it	contains.



Our	plan	is	to	calculate	the	determinant	by	breaking	the	calculation	into
successively	simpler	determinants	until	we	reach	the	base	case	above.	To	do	this,
we	need	a	statement	involving	recursion.	However,	we	need	to	define	a	few
things	before	we	can	make	the	statement.	First,	we	need	to	define	the	minor	of	a
matrix.	The	(i,	j)-minor	of	a	matrix,	A,	is	the	matrix	left	after	removing	the	ith
row	and	jth	column	of	A.	We’ll	denote	a	minor	matrix	by	Aij.	For	example,
given

then

where	the	minor,	A11,	is	found	by	deleting	row	1	and	column	1	to	leave	only	the
underlined	values.

Second,	we	need	to	define	the	cofactor,	Cij,	of	the	minor,	Aij.	This	is	where
our	recursive	statement	appears.	The	definition	is

Cij	=	(−1)i+j+2det(Aij)

The	cofactor	depends	on	the	determinant	of	the	minor.	Notice	the	exponent	on
−1,	written	as	i	+	j	+	2.	If	you	look	at	most	math	books,	you’ll	see	the	exponent
as	i	+	j.	We’ve	made	a	conscious	choice	to	define	matrices	with	zero-based
indices	so	the	math	and	implementation	in	code	match	without	being	off	by	one.
Here’s	one	place	where	that	choice	forces	us	to	be	less	elegant	than	the	math
texts.	Because	our	indices	are	“off”	by	one,	we	need	to	add	that	one	back	into	the
exponent	of	the	cofactor	so	the	pattern	of	positive	and	negative	values	that	the
cofactor	uses	is	correct.	This	means	adding	one	to	each	of	the	variables	in	the
exponent:	i	→	i	+	1	and	j	→	j	+	1.	This	makes	the	exponent	i	+	j	→	(i	+	1)	+	(j	+
1)	=	i	+	j	+	2.

We’re	now	ready	for	our	full	recursive	definition	of	the	determinant	of	A	by
using	cofactor	expansion.	It	turns	out	that	summing	the	product	of	the	matrix
values	and	associated	cofactors	for	any	row	or	column	of	a	square	matrix	will
give	us	the	determinant.	So,	we’ll	use	the	first	row	of	the	matrix	and	calculate



the	determinant	as

You	may	be	wondering:	Where’s	the	recursion	in	Equation	6.3?	It	shows	up
on	the	determinant	of	the	minor.	If	A	is	an	n	×	n	matrix,	the	minor,	Aij,	is	an	(n	−
1)	×	(n	−	1)	matrix.	Therefore,	to	calculate	the	cofactors	to	find	the	determinant
of	an	n	×	n	matrix,	we	need	to	know	how	to	find	the	determinant	of	an	(n	−	1)	×
(n	−	1)	matrix.	However,	we	can	use	cofactor	expansion	to	find	the	(n	−	1)	×	(n
−	1)	determinant,	which	involves	finding	the	determinant	of	an	(n	−	2)	×	(n	−	2)
matrix.	This	process	continues	until	we	get	to	a	1	×	1	matrix.	We	already	know
the	determinant	of	a	1	×	1	matrix	is	the	single	value	it	contains.

Let’s	work	through	this	process	for	a	2	×	2	matrix:

Using	cofactor	expansion,	we	get

which	is	the	formula	for	the	determinant	of	a	2	×	2	matrix.	The	minors	of	a	2	×	2
matrix	are	1	×	1	matrices,	each	returning	either	d	or	c	in	this	case.

In	NumPy,	we	calculate	determinants	with	np.linalg.det.	For	example,

>>>	a	=	np.array([[1,2],[3,4]])
>>>	print(a)
[[1	2]
	[3	4]]
>>>	np.linalg.det(a)
-2.0000000000000004
>>>	1*4	-	2*3



-2

The	last	line	of	code	uses	the	formula	for	a	2	×	2	matrix	we	derived	above	for
comparison	purposes.	Internally,	NumPy	does	not	use	recursive	cofactor
expansion	to	calculate	the	determinant.	Instead,	it	factors	the	matrix	into	the
product	of	three	matrices:	(1)	a	permutation	matrix,	which	looks	like	a
scrambled	identity	matrix	with	only	a	single	one	in	each	row	and	column,	(2)	a
lower	triangular	matrix,	and	(3)	an	upper	triangular	matrix.	The	determinant	of
the	permutation	matrix	is	either	+1	or	−1.	The	determinant	of	a	triangular	matrix
is	the	product	of	the	diagonal	elements,	while	the	determinant	of	a	product	of
matrices	is	the	product	of	the	per-matrix	determinants.

We	can	use	determinants	to	determine	whether	a	matrix	has	an	inverse.	Let’s
turn	there	now.

Inverses
Equation	6.2	defines	the	identity	matrix.	We	said	that	this	matrix	acts	like	the
number	1,	so	when	it	multiplies	a	square	matrix,	the	same	square	matrix	is
returned.	When	multiplying	scalars,	we	know	that	for	any	number,	x	≠	0,	there
exists	another	number,	call	it	y,	such	that	xy	=	1.	This	number	is	the
multiplicative	inverse	of	x.	Furthermore,	we	know	exactly	what	y	is;	it’s	1/x	=
x−1.

By	analogy,	then,	we	might	wonder	if,	since	we	have	an	identity	matrix	that
acts	like	the	number	1,	there	is	another	square	matrix,	call	it	A−1,	for	a	given
square	matrix,	A,	such	that

AA−1	=	A−1	A	=	I

If	A−1	exists,	it’s	known	as	the	inverse	matrix	of	A,	and	A	is	said	to	be
invertable.	For	real	numbers,	all	numbers	except	zero	have	an	inverse.	For
matrices,	it	isn’t	so	straightforward.	Many	square	matrices	don’t	have	inverses.
To	check	if	A	has	an	inverse,	we	use	the	determinant:	det(A)	=	0	tells	us	that	A
has	no	inverse.	Furthermore,	if	A−1	exists,	then

Note	also	that	(A−1)−1	=	A,	as	is	the	case	for	real	numbers.	Another	useful
property	of	inverses	is



(AB)−1	=	B−1	A−1

where	the	order	of	the	product	on	the	right-hand	side	is	important.	Finally,	note
that	the	inverse	of	a	diagonal	matrix	is	simply	the	reciprocal	of	the	diagonal
elements:

It’s	possible	to	calculate	the	inverse	by	hand	using	row	operations,	which
we’ve	conveniently	ignored	here	because	they	are	seldom	used	in	deep	learning.
Cofactor	expansion	techniques	can	also	calculate	the	inverse,	but	to	save	time,
we	won’t	elaborate	on	the	process	here.	What’s	important	for	us	is	to	know	that
square	matrices	often	have	an	inverse,	and	that	we	can	calculate	inverses	with
NumPy	via	np.linalg.inv.

If	a	matrix	is	not	invertible,	the	matrix	is	said	to	be	singular.	Therefore,	the
determinant	of	a	singular	matrix	is	zero.	If	a	matrix	has	an	inverse,	it	is	a
nonsingular	or	nondegenerate	matrix.

In	NumPy,	we	use	np.linalg.inv	to	calculate	the	inverse	of	a	square	matrix.	For
example,

>>>	a	=	np.array([[1,2,1],[2,1,2],[1,2,2]])
>>>	print(a)
[[1	2	1]
	[2	1	2]
	[1	2	2]]
>>>	b	=	np.linalg.inv(a)
>>>	print(b)
[[	0.66666667	0.66666667	-1.	]
	[	0.66666667	-0.33333333	0.	]
	[-1.										0.									1.	]]
>>>	print(a	@	b)
[[1.	0.	0.]
	[0.	1.	0.]
	[0.	0.	1.]]
>>>	print(b	@	a)
[[1.	0.	0.]
	[0.	1.	0.]
	[0.	0.	1.]]

Notice	the	inverse	(b)	working	as	we	expect	and	giving	the	identity	matrix	when
multiplying	a	from	the	left	or	right.



Symmetric,	Orthogonal,	and	Unitary	Matrices
If	for	a	square	matrix,	A,	we	have

A⊤	=	A

then	A	is	said	to	be	a	symmetric	matrix.	For	example,

is	a	symmetric	matrix,	since	A⊤	=	A.
Notice	that	diagonal	matrices	are	symmetric,	and	the	product	of	two

symmetric	matrices	is	commutative:	AB	=	BA.	The	inverse	of	a	symmetric
matrix,	if	it	exists,	is	also	a	symmetric	matrix.

If	the	following	is	true,

AA⊤	=	A⊤	A	=	I

then	A	is	an	orthogonal	matrix.	If	A	is	an	orthogonal	matrix,	then

A−1	=	A⊤

and,	as	a	result,

det(A)	=	±1

If	the	values	in	the	matrix	are	allowed	to	be	complex,	which	does	not	happen
often	in	deep	learning,	and

U*U	=	UU*	=	I

then	U	is	a	unitary	matrix	with	U*	being	the	conjugate	transpose	of	U.	The
conjugate	transpose	is	the	ordinary	matrix	transpose	followed	by	the	complex
conjugate	operation	to	change	 	to	−i.	So,	we	might	have



Sometimes,	especially	in	physics,	the	conjugate	transpose	is	called	the
Hermitian	adjoint	and	is	denoted	as	A†.	If	a	matrix	is	equal	to	its	conjugate
transpose,	it	is	called	a	Hermitian	matrix.	Notice	that	real	symmetric	matrices
are	also	Hermitian	matrices	because	the	conjugate	transpose	is	the	same	as	the
ordinary	transpose	when	the	values	are	real	numbers.	Therefore,	you	might
encounter	the	term	Hermitian	in	place	of	symmetric	when	referring	to	matrices
with	real	elements.

Definiteness	of	a	Symmetric	Matrix
We	saw	at	the	beginning	of	this	section	that	an	n	×	n	square	matrix	maps	a
vector	in	ℝn	to	another	vector	in	ℝn.	Let’s	consider	now	a	symmetric	n	×	n
matrix,	B,	with	real-valued	elements.	We	can	characterize	this	matrix	by	how	it
maps	vectors	using	the	inner	product	between	the	mapped	vector	and	the	original
vector.	Specifically,	if	x	is	a	column	vector	(n	×	1),	then	Bx	is	also	an	n	×	1
column	vector.	Therefore,	the	inner	product	of	this	vector	and	the	original
vector,	x,	is	x⊤Bx,	a	scalar.

If	the	following	is	true:

then	B	is	said	to	be	positive	definite.	Here,	the	bolded	0	is	the	n	×	1	column
vector	of	all	zeros,	and	∀	is	math	notation	meaning	“for	all.”

Similarly,	if

then	B	is	negative	definite.	Relaxing	the	inner	product	relationship	and	the
nonzero	requirement	on	x	gives	two	additional	cases.	If

then	B	is	said	to	be	positive	semidefinite,	and

makes	B	a	negative	semidefinite	matrix.	Finally,	a	real	square	symmetric	matrix
that	is	neither	positive	nor	negative	semidefinite	is	called	an	indefinite	matrix.
The	definiteness	of	a	matrix	tells	us	something	about	the	eigenvalues,	which
we’ll	learn	more	about	in	the	next	section.	If	a	symmetric	matrix	is	positive
definite,	then	all	of	its	eigenvalues	are	positive.	Similarly,	a	symmetric	negative



definite	matrix	has	all	negative	eigenvalues.	Positive	and	negative	semidefinite
symmetric	matrices	have	eigenvalues	that	are	all	positive	or	zero	or	all	negative
or	zero,	respectively.

Let’s	shift	gears	now	from	talking	about	types	of	matrices	to	discovering	the
importance	of	eigenvectors	and	eigenvalues,	key	properties	of	a	matrix	that	we
use	frequently	in	deep	learning.

Eigenvectors	and	Eigenvalues
We	learned	above	that	a	square	matrix	maps	a	vector	into	another	vector	in	the
same	dimensional	space,	v′	=	Av,	where	both	v′	and	v	are	n-dimensional	vectors,
if	A	is	an	n	×	n	matrix.

Consider	this	equation,

for	some	square	matrix,	A,	where	λ	is	a	scalar	value	and	v	is	a	nonzero	column
vector.

Equation	6.4	says	that	the	vector,	v,	is	mapped	by	A	back	into	a	scalar
multiple	of	itself.	We	call	v	an	eigenvector	of	A	with	eigenvalue	λ.	The	prefix
eigen	comes	from	German	and	is	often	translated	as	“self,”	“characteristic,”	or
even	“proper.”	Thinking	geometrically,	Equation	6.4	says	that	the	action	of	A	on
its	eigenvectors	in	ℝn	is	to	shrink	or	expand	the	vector	without	changing	its
direction.	Note,	while	v	is	nonzero,	it’s	possible	for	λ	to	be	zero.

How	does	Equation	6.4	relate	to	the	identity	matrix,	I	?	By	definition,	the
identity	matrix	maps	a	vector	back	into	itself	without	scaling	it.	Therefore,	the
identity	matrix	has	an	infinite	number	of	eigenvectors,	and	all	of	them	have	an
eigenvalue	of	1,	since,	for	any	x,	Ix	=	x.	Therefore,	the	same	eigenvalue	may
apply	to	more	than	one	eigenvector.

Recall	that	Equation	6.1	defines	a	rotation	matrix	in	2D	space	for	some	given
angle,	θ.	This	matrix	has	no	eigenvectors,	because,	for	any	nonzero	vector,	it
rotates	the	vector	by	θ,	so	it	can	never	map	a	vector	back	into	its	original
direction.	Therefore,	not	every	matrix	has	eigenvectors.

Finding	Eigenvalues	and	Eigenvectors
To	find	the	eigenvalues	of	a	matrix,	if	there	are	any,	we	go	back	to	Equation	6.4
and	rewrite	it:



We	can	insert	the	identity	matrix,	I,	between	λ	and	v	because	Iv	=	v.	Therefore,
to	find	the	eigenvalues	of	A,	we	need	to	find	values	of	λ	that	cause	the	matrix	A
−	λI	to	map	a	nonzero	vector,	v,	to	the	zero	vector.	Equation	6.5	only	has
solutions	other	than	the	zero	vector	if	the	determinant	of	A	−	λI	is	zero.

The	above	gives	us	a	way	to	find	the	eigenvalues.	For	example,	consider
what	A	−	λI	looks	like	for	a	2	×	2	matrix:

We	learned	above	that	the	determinant	of	a	2	×	2	matrix	has	a	simple	form;
therefore,	the	determinant	of	the	matrix	above	is

det(A	−	λI)	=	(a	−	λ)(d	−	λ)	−	bc

This	equation	is	a	second-degree	polynomial	in	λ.	Since	we	need	the
determinant	to	be	zero,	we	set	this	polynomial	to	zero	and	find	the	roots.	The
roots	are	the	eigenvalues	of	A.	The	polynomial	that	this	process	finds	is	called
the	characteristic	polynomial,	and	Equation	6.5	is	the	characteristic	equation.
Notice	above	that	the	characteristic	polynomial	is	a	second-degree	polynomial.
In	general,	the	characteristic	polynomial	of	an	n	×	n	matrix	is	of	degree	n,	so	a
matrix	has	at	most	n	distinct	eigenvalues,	since	an	nth	degree	polynomial	has	at
most	n	roots.

Once	we	know	the	roots	of	the	characteristic	polynomial,	we	can	go	back	to
Equation	6.5,	substitute	each	root	for	λ,	and	solve	to	find	the	associated
eigenvectors,	the	v’s	of	Equation	6.5.

The	eigenvalues	of	a	triangular	matrix,	which	includes	diagonal	matrices,	are
straightforward	to	calculate	because	the	determinant	of	such	a	matrix	is	simply
the	product	of	the	main	diagonal.	For	example,	for	a	4	×	4	triangular	matrix,	the
determinant	of	the	characteristic	equation	is



det(A	−	λI)	=	(a00	−	λ)(a11	−	λ)(a22	−	λ)(a33	−	λ)

which	has	four	roots:	the	values	of	the	diagonal.	For	triangular	and	diagonal
matrices,	the	entries	on	the	main	diagonal	are	the	eigenvalues.

Let’s	see	a	worked	eigenvalue	example	for	the	following	matrix:

I	selected	this	matrix	to	make	the	math	nicer,	but	the	process	works	for	any
matrix.	The	characteristic	equation	means	we	need	the	λ	values	that	make	the
determinant	zero,	as	shown	next.

The	characteristic	polynomial	is	easily	factored	to	give	λ	=	−1,	−2.
In	code,	to	find	the	eigenvalues	and	eigenvectors	of	a	matrix,	we	use

np.linalg.eig.	Let’s	check	our	calculation	above	to	see	if	NumPy	agrees:

>>>	a	=	np.array([[0,1],[-2,-3]])
>>>	print(np.linalg.eig(a)[0])
[-1.	-2.]

The	np.linalg.eig	function	returns	a	list.	The	first	element	is	a	vector	of	the
eigenvalues	of	the	matrix.	The	second	element,	which	we	are	ignoring	for	the
moment,	is	a	matrix,	the	columns	of	which	are	the	eigenvectors	associated	with
each	of	the	eigenvalues.	Note	that	we	also	could	have	used	np.linalg.eigvals	to	return
just	the	eigenvalues.	Regardless,	we	see	that	our	calculation	of	the	eigenvalues
of	A	is	correct.

To	find	the	associated	eigenvectors,	we	put	each	of	the	eigenvalues	back	into
Equation	6.5	and	solve	for	v.	For	example,	for	λ	=	−1,	we	get



which	leads	to	the	system	of	equations:

				v0	+	v1	=	0

−2v0	−	2v1	=	0

This	system	has	many	solutions,	as	long	as	v0	=	−v1.	That	means	we	can	pick
v0	and	v1,	as	long	as	the	relationship	between	them	is	preserved.	Therefore,	we
have	our	eigenvector	for

If	we	repeat	this	process	for	λ	=	−2,	we	get	the	relationship	between	the

components	of	v2	to	be	2v0	=	−v1.	Therefore,	we	select	 	as	the
second	eigenvector.

Let’s	see	if	NumPy	agrees	with	us.	This	time,	we’ll	display	the	second	list
element	returned	by	np.linalg.eig.	This	is	a	matrix	where	the	columns	of	the	matrix
are	the	eigenvectors:

>>>	print(np.linalg.eig(a)[1])
[[	0.70710678	-0.4472136	]
	[-0.70710678		0.89442719]]

Hmm	.	.	.	the	columns	of	this	matrix	do	not	appear	to	match	our	selected
eigenvectors.	But	don’t	worry—we	didn’t	make	a	mistake.	Recall	that	the
eigenvectors	were	not	uniquely	determined,	only	the	relationship	between	the
components	was	determined.	If	we’d	wanted	to,	we	could	have	selected	other
values,	as	long	as	for	one	eigenvector	they	were	of	equal	magnitude	and	opposite
sign,	and	for	the	other	they	were	in	the	ratio	of	2:1	with	opposite	signs.	What
NumPy	returns	is	a	set	of	eigenvectors	that	are	of	unit	length.	So,	to	see	that	our
hand	calculation	is	correct,	we	need	to	make	our	eigenvectors	unit	vectors	by
dividing	each	component	by	the	square	root	of	the	sum	of	the	squares	of	the
components.	In	code,	it’s	succinct,	if	a	bit	messy:



components.	In	code,	it’s	succinct,	if	a	bit	messy:

>>>	np.array([1,-1])/np.sqrt((np.array([1,-1])**2).sum())
array([	0.70710678,	-0.70710678])
>>>	np.array([-1,2])/np.sqrt((np.array([-1,2])**2).sum())
array([-0.4472136,	0.89442719])

Now	we	see	that	we’re	correct.	The	unit	vector	versions	of	the	eigenvectors
do	match	the	columns	of	the	matrix	NumPy	returned.

We’ll	use	the	eigenvectors	and	eigenvalues	of	a	matrix	often	when	we’re
doing	deep	learning.	For	example,	we’ll	see	them	again	later	in	the	chapter	when
we	investigate	principal	component	analysis.	But	before	we	can	learn	about
PCA,	we	need	to	change	focus	once	again	and	learn	about	vector	norms	and
distance	metrics	commonly	used	in	deep	learning,	especially	about	the
covariance	matrix.

Vector	Norms	and	Distance	Metrics
In	common	deep	learning	parlance,	people	are	somewhat	sloppy	and	use	the
terms	norm	and	distance	interchangeably.	We	can	forgive	them	for	doing	so;	the
difference	between	the	terms	is	small	in	practice,	as	we’ll	see	below.

A	vector	norm	is	a	function	that	maps	a	vector,	real	or	complex,	to	some
value,	x	∈	ℝ,	x	≥	0.	A	norm	must	satisfy	some	specific	properties	in	a
mathematical	sense,	but	in	practice,	not	everything	that’s	called	a	norm	is,	in
fact,	a	norm.	In	deep	learning,	we	usually	use	norms	as	distances	between	pairs
of	vectors.	In	practice,	an	important	property	for	a	distance	measure	is	that	the
order	of	the	inputs	doesn’t	matter.	If	f(x,	y)	is	a	distance,	then	f(x,	y)	=	f(y,	x).
Again,	this	is	not	rigorously	followed;	for	example,	you’ll	often	see	the
Kullback-Leibler	divergence	(KL-divergence)	used	as	a	distance	even	though
this	property	doesn’t	hold.

Let’s	start	with	vector	norms	and	see	how	we	can	easily	use	them	as	a
distance	measure	between	vectors.	Then	we’ll	introduce	the	important	concept
of	a	covariance	matrix,	heavily	used	on	its	own	in	deep	learning,	and	see	how	we
can	create	a	distance	measure	from	it:	the	Mahalanobis	distance.	We’ll	end	the
section	by	introducing	the	KL-divergence,	which	we	can	view	as	a	measure
between	two	discrete	probability	distributions.

L-Norms	and	Distance	Metrics



For	an	n-dimensional	vector,	x,	we	define	the	p-norm	of	the	vector	to	be

where	p	is	a	real	number.	Although	we	use	p	in	the	definition,	people	generally
refer	to	these	as	Lp	norms.	We	saw	one	of	these	norms	in	Chapter	5	when	we
defined	the	magnitude	of	a	vector.	In	that	case,	we	were	calculating	the	L2-norm,

which	is	the	square	root	of	the	inner	product	of	x	with	itself.
The	norms	we	use	most	often	in	deep	learning	are	the	L2-norm	and	the	L1-

norm,

which	is	nothing	more	than	the	sum	of	the	absolute	values	of	the	components	of
x.	Another	norm	you’ll	encounter	is	the	L∞-norm,

L∞	=	max	|xi|

the	maximum	absolute	value	of	the	components	of	x.
If	we	replace	x	with	the	difference	of	two	vectors,	x	−	y,	we	can	treat	the

norms	as	distance	measures	between	the	two	vectors.	Alternatively,	we	can
picture	the	process	as	computing	the	vector	norm	on	the	vector	that	is	the
difference	between	x	and	y.

Switching	from	norm	to	distance	makes	a	trivial	change	in	Equation	6.6:

The	L2-distance	becomes

This	is	the	Euclidean	distance	between	two	vectors.	The	L1-distance	is	often



called	the	Manhattan	distance	(also	called	city	block	distance,	boxcar	distance,
or	taxicab	distance):

It’s	so	named	because	it	corresponds	to	the	length	a	taxicab	would	travel	on	the
grid	of	streets	in	Manhattan.	The	L∞-distance	is	sometimes	known	as	the
Chebyshev	distance.

Norm	equations	have	other	uses	in	deep	learning.	For	example,	weight
decay,	used	in	deep	learning	as	a	regularizer,	uses	the	L2-norm	of	the	weights	of
the	model	to	keep	the	weights	from	getting	too	large.	The	L1-norm	of	the
weights	is	also	sometimes	used	as	a	regularizer.

Let’s	move	now	to	consider	the	important	concept	of	a	covariance	matrix.	It
isn’t	a	distance	metric	itself	but	is	used	by	one,	and	it	will	show	up	again	later	in
the	chapter.

Covariance	Matrices
If	we	have	a	collection	of	measurements	on	multiple	variables,	like	a	training	set
with	feature	vectors,	we	can	calculate	the	variance	of	the	features	with	respect	to
each	other.	For	example,	here’s	a	matrix	of	observations	of	four	variables,	one
per	row:

In	reality,	X	is	the	first	five	samples	from	the	famous	iris	dataset.	For	the	iris
dataset,	the	features	are	measurements	of	the	parts	of	iris	flowers	from	three
different	species.	You	can	load	this	dataset	into	NumPy	using	sklearn:

>>>	from	sklearn	import	datasets
>>>	iris	=	datasets.load_iris()
>>>	X	=	iris.data[:5]
>>>	X
array([[5.1,	3.5,	1.4,	0.2],
							[4.9,	3.0,	1.4,	0.2],
							[4.7,	3.2,	1.3,	0.2],
							[4.6,	3.1,	1.5,	0.2],



							[5.0,	3.6,	1.4,	0.2]])

We	could	calculate	the	standard	deviation	of	each	of	the	features,	the
columns	of	A,	but	that	would	only	tell	us	about	the	variance	of	the	values	of	that
feature	around	its	mean.	Since	we	have	multiple	features,	it	would	be	nice	to
know	something	about	how	the	features	in,	say,	column	zero	and	column	one
vary	together.	To	determine	this,	we	need	to	calculate	the	covariance	matrix.
This	matrix	captures	the	variance	of	the	individual	features	along	the	main
diagonal.	Meanwhile,	the	off-diagonal	values	represent	how	one	feature	varies	as
another	varies—these	are	the	covariances.	Since	there	are	four	features,	the
covariance	matrix,	which	is	always	square,	is,	in	this	case,	a	4	×	4	matrix.	We
find	the	elements	of	the	covariance	matrix,	Σ,	by	calculating

assuming	the	rows	of	the	matrix,	X,	are	the	observations,	and	the	columns	of	X
represent	the	different	features.	The	means	of	the	features	across	all	rows	are	
and	 	for	features	i	and	j.	Here,	n	is	the	number	of	observations,	the	number	of
rows	in	X.	We	can	see	that	when	i	=	j,	the	covariance	value	is	the	normal
variance	for	that	feature.	When	i	≠	j,	the	value	is	how	i	and	j	vary	together.	We
often	denote	the	covariance	matrix	as	Σ,	and	it	is	always	symmetric:	∑ij	=	∑ji.

Let’s	calculate	some	elements	of	the	covariance	matrix	for	X	above.	The	per-
feature	means	are	 .	Let’s	find	the	first	row	of	Σ.	This
will	tell	us	the	variance	of	the	first	feature	(column	of	X)	and	how	that	feature
varies	with	the	second,	third,	and	fourth	features.	Therefore,	we	need	to	calculate
∑00,	∑01,	∑02,	and	∑03:



We	can	repeat	this	calculation	for	all	the	rows	of	Σ	to	give	the	complete
covariance	matrix:

The	elements	along	the	diagonal	represent	the	variance	of	the	features	of	X.
Notice	that	for	the	fourth	feature	of	X,	all	the	variances	and	covariances	are	zero.
This	makes	sense	because	all	the	values	for	this	feature	in	X	are	the	same;	there
is	no	variance.

We	can	calculate	the	covariance	matrix	for	a	set	of	observations	in	code	by
using	np.cov:

>>>	print(np.cov(X,	rowvar=False))
[[	0.043			0.0365	-0.0025		0.				]
	[	0.0365		0.067		-0.0025		0.				]
	[-0.0025	-0.0025		0.005			0.				]
	[	0.						0.						0.						0.				]]

Notice	that	the	call	to	np.cov	includes	rowvar=False.	By	default,	np.cov	expects
each	row	of	its	argument	to	be	a	variable	and	the	columns	to	be	the	observations
of	that	variable.	This	is	the	opposite	of	the	usual	way	a	set	of	observations	is



typically	stored	in	a	matrix	for	deep	learning.	Therefore,	we	use	the	rowvar
keyword	to	tell	NumPy	that	the	rows,	not	the	columns,	are	the	observations.

I	claimed	above	that	the	diagonal	of	the	covariance	matrix	returns	the
variances	of	the	features	in	X.	NumPy	has	a	function,	np.std,	to	calculate	the
standard	deviation,	and	squaring	the	output	of	this	function	should	give	us	the
variances	of	the	features	by	themselves.	For	X,	we	get

>>>	print(np.std(X,	axis=0)**2)
[0.0344	0.0536	0.004	0.					]

These	variances	don’t	look	like	the	diagonal	of	the	covariance	matrix.	The
difference	is	due	to	the	n	−	1	in	the	denominator	of	the	covariance	equation,
Equation	6.8.	By	default,	np.std	calculates	what	is	known	as	a	biased	estimate	of
the	sample	variance.	This	means	that	instead	of	dividing	by	n	−	1,	it	divides	by
n.	To	get	np.std	to	calculate	the	unbiased	estimator	of	the	variance,	we	need	to	add
the	ddof=1	keyword,

>>>	print(np.std(X,	axis=0,	ddof=1)**2)
[0.043	0.067	0.005		0.			]

then	we’ll	get	the	same	values	as	along	the	diagonal	of	Σ.
Now	that	we	know	how	to	calculate	the	covariance	matrix,	let’s	use	it	in	a

distance	metric.

Mahalanobis	Distance
Above,	we	represented	a	dataset	by	a	matrix	where	the	rows	of	the	dataset	are
observations	and	the	columns	are	the	values	of	variables	that	make	up	each
observation.	In	machine	learning	terms,	the	rows	are	the	feature	vectors.	As	we
saw	above,	we	can	calculate	the	mean	of	each	feature	across	all	the	observations,
and	we	can	calculate	the	covariance	matrix.	With	these	values,	we	can	define	a
distance	metric	called	the	Mahalanobis	distance,

where	x	is	a	vector,	μ	is	the	vector	formed	by	the	mean	values	of	each	feature,
and	Σ	is	the	covariance	matrix.	Notice	that	this	metric	uses	the	inverse	of	the
covariance	matrix,	not	the	covariance	matrix	itself.

Equation	6.9	is,	in	some	sense,	measuring	the	distance	between	a	vector	and
a	distribution	with	the	mean	vector	μ.	The	dispersion	of	the	distribution	is
captured	in	Σ.	If	there	is	no	covariance	between	the	features	in	the	dataset	and



each	feature	has	the	same	standard	deviation,	then	Σ	becomes	the	identity
matrix,	which	is	its	own	inverse.	In	that	case,	Σ−1	effectively	drops	out	of
Equation	6.9,	and	the	Mahalanobis	distance	becomes	the	L2-distance	(Euclidean
distance).

Another	way	to	think	of	the	Mahalanobis	distance	is	to	replace	μ	with
another	vector,	call	it	y,	that	comes	from	the	same	dataset	as	x.	Then	DM	is	the
distance	between	the	two	vectors,	taking	the	variance	of	the	dataset	into	account.

We	can	use	the	Mahalanobis	distance	to	build	a	simple	classifier.	If,	given	a
dataset,	we	calculate	the	mean	feature	vector	of	each	class	in	the	dataset	(this
vector	is	also	called	the	centroid),	we	can	use	the	Mahalanobis	distance	to	assign
a	label	to	an	unknown	feature	vector,	x.	We	can	do	so	by	calculating	all	the
Mahalanobis	distances	to	the	class	centroids	and	assigning	x	to	the	class
returning	the	smallest	value.	This	type	of	classifier	is	sometimes	called	a	nearest
centroid	classifier,	and	you’ll	often	see	it	implemented	using	the	L2-distance	in
place	of	the	Mahalanobis	distance.	Arguably,	you	can	expect	the	Mahalanobis
distance	to	be	the	better	metric	because	it	takes	the	variance	of	the	dataset	into
account.

Let’s	use	the	breast	cancer	dataset	included	with	sklearn	to	build	the	nearest
centroid	classifier	using	the	Mahalanobis	distance.	The	breast	cancer	dataset	has
two	classes:	benign	(0)	and	malignant	(1).	The	dataset	contains	569
observations,	each	of	which	has	30	features	derived	from	histology	slides.	We’ll
build	two	versions	of	the	nearest	centroid	classifier:	one	using	the	Mahalanobis
distance	and	the	other	using	the	Euclidean	distance.	Our	expectation	is	that	the
classifier	using	the	Mahalanobis	distance	will	perform	better.

The	code	we	need	is	straightforward:

			import	numpy	as	np
			from	sklearn	import	datasets
❶	from	scipy.spatial.distance	import	mahalanobis

			bc	=	datasets.load_breast_cancer()
			d	=	bc.data;	l	=	bc.target
❷	i	=	np.argsort(np.random.random(len(d)))
			d	=	d[i];	l	=	l[i]
			xtrn,	ytrn	=	d[:400],	l[:400]
			xtst,	ytst	=	d[400:],	l[400:]
❸	i	=	np.where(ytrn	==	0)
			m0	=	xtrn[i].mean(axis=0)
			i	=	np.where(ytrn	==	1)
			m1	=	xtrn[i].mean(axis=0)
			S	=	np.cov(xtrn,	rowvar=False)



			SI=	np.linalg.inv(S)

			def	score(xtst,	ytst,	m,	SI):
							nc	=	0
							for	i	in	range(len(ytst)):
											d	=	np.array([mahalanobis(xtst[i],m[0],SI),
																									mahalanobis(xtst[i],m[1],SI)])
											c	=	np.argmin(d)
											if	(c	==	ytst[i]):
															nc	+=	1
							return	nc	/	len(ytst)

			mscore	=	score(xtst,	ytst,	[m0,m1],	SI)
❹	escore	=	score(xtst,	ytst,	[m0,m1],	np.identity(30))
			print("Mahalanobis	score	=	%0.4f"	%	mscore)
			print("Euclidean	score	=	%0.4f"	%	escore)

We	start	by	importing	the	modules	we	need,	including	mahalanobis	from	SciPy
❶.	This	function	accepts	two	vectors	and	the	inverse	of	a	covariance	matrix	and
returns	DM.	We	get	the	dataset	next	in	d	with	labels	in	l.	We	randomize	the	order
❷	and	pull	out	the	first	400	observations	as	training	data	(xtrn)	with	labels	(ytrn).
We	hold	back	the	remaining	observations	for	testing	(xtst,	ytst).

We	train	the	model	next.	Training	consists	of	pulling	out	all	the	observations
belonging	to	each	class	❸	and	calculating	m0	and	m1.	These	are	the	mean	values
of	each	of	the	30	features	for	all	class	0	and	class	1	observations.	We	then
calculate	the	covariance	matrix	of	the	entire	training	set	(S)	and	its	inverse	(SI).

The	score	function	takes	the	test	observations,	a	list	of	the	class	mean	vectors,
and	the	inverse	of	the	covariance	matrix.	It	runs	through	each	test	observation
and	calculates	the	Mahalanobis	distances	(d).	It	then	uses	the	smallest	distance	to
assign	the	class	label	(c).	If	the	assigned	label	matches	the	actual	test	label,	we
count	it	(nc).	At	the	end	of	the	function,	we	return	the	overall	accuracy.

We	call	the	score	function	twice.	The	first	call	uses	the	inverse	covariance
matrix	(SI),	while	the	second	call	uses	an	identity	matrix,	thereby	making	score
calculate	the	Euclidean	distance	instead.	Finally,	we	print	both	results.

The	randomization	of	the	dataset	❷	means	that	each	time	the	code	is	run,	it
will	output	slightly	different	scores.	Running	the	code	100	times	gives	the
following	mean	scores	(±	the	standard	deviation).

Distance Mean	score
Mahalanobis 0.9595	±	0.0142
Euclidean 0.8914	±	0.0185



This	clearly	shows	that	using	the	Mahalanobis	distance	leads	to	better	model
performance,	with	about	a	7	percent	improvement	in	accuracy.

One	recent	use	of	the	Mahalanobis	distance	in	deep	learning	is	to	take	the
top-level	embedding	layer	values,	a	vector,	and	use	the	Mahalanobis	distance	to
detect	out-of-domain	or	adversarial	inputs.	An	out-of-domain	input	is	one	that	is
significantly	different	from	the	type	of	data	the	model	was	trained	to	use.	An
adversarial	input	is	one	where	an	adversary	is	deliberately	attempting	to	fool	the
model	by	supplying	an	input	that	isn’t	of	class	X	but	that	the	model	will	label	as
class	X.

Kullback-Leibler	Divergence
The	Kullback-Leibler	divergence	(KL-divergence),	or	relative	entropy,	is	a
measure	of	the	similarity	between	two	probability	distributions:	the	lower	the
value,	the	more	similar	the	distributions.

If	P	and	Q	are	discrete	probability	distributions,	the	KL-divergence	is

where	log2	is	the	logarithm	base-2.	This	is	an	information-theoretic	measure;	the
output	is	in	bits	of	information.	Sometimes	the	natural	log,	ln,	is	used,	in	which
case	the	measure	is	said	to	be	in	nats.	The	SciPy	function	that	implements	the
KL-divergence	is	in	scipy.special	as	rel_entr.	Note	that	rel_entr	uses	the	natural	log,	not
log	base-2.	Note	also	that	the	KL-divergence	isn’t	a	distance	metric	in	the
mathematical	sense	because	it	violates	the	symmetry	property,	DKL(P||Q)	≠
DKL(Q||P),	but	that	doesn’t	stop	people	from	using	it	as	one	from	time	to	time.

Let’s	see	an	example	of	how	we	might	use	the	KL-divergence	to	measure
between	different	discrete	probability	distributions.	We’ll	measure	the
divergence	between	two	different	binomial	distributions	and	a	uniform
distribution.	Then,	we’ll	plot	the	distributions	to	see	if,	visually,	we	believe	the
numbers.

To	generate	the	distributions,	we’ll	take	many	draws	from	a	uniform
distribution	with	12	possible	outputs.	We	can	do	this	quickly	in	code	by	using
np.random.randint.	Then,	we’ll	take	draws	from	two	different	binomial	distributions,
B(12,	0.4)	and	B(12,	0.9),	meaning	12	trials	with	probabilities	of	0.4	and	0.9	per
trial.	We’ll	generate	histograms	of	the	resulting	draws,	divide	by	the	sum	of	the
counts,	and	use	the	rescaled	histograms	as	our	probability	distributions.	We	can



then	measure	the	divergences	between	them.
The	code	we	need	is

			from	scipy.special	import	rel_entr
			N	=	1000000
❶	p	=	np.random.randint(0,13,size=N)
❷	p	=	np.bincount(p)
❸	p	=	p	/	p.sum()
			q	=	np.random.binomial(12,0.9,size=N)
			q	=	np.bincount(q)
			q	=	q	/	q.sum()
			w	=	np.random.binomial(12,0.4,size=N)
			w	=	np.bincount(w)
			w	=	w	/	w.sum()
			print(rel_entr(q,p).sum())
			print(rel_entr(w,p).sum())

We	load	rel_entr	from	SciPy	and	set	the	number	of	draws	for	each	distribution
to	1,000,000	(N).	The	code	to	generate	the	respective	probability	distributions
follows	the	same	method	for	each	distribution.	We	draw	N	samples	from	the
distribution,	starting	with	the	uniform	❶.	We	use	randint	because	it	returns
integers	in	the	range	[0,	12]	so	we	can	match	the	discrete	[0,	12]	values	that
binomial	returns	for	12	trials.	We	get	the	histogram	from	the	vector	of	draws	by
using	np.bincount.	This	function	counts	the	frequency	of	unique	values	in	a	vector
❷.	Finally,	we	change	the	counts	into	fractions	by	dividing	the	histogram	by	the
sum	❸.	This	gives	us	a	12-element	vector	in	p	representing	the	probability	that
randint	will	return	the	values	0	through	12.	Assuming	randint	uses	a	good
pseudorandom	number	generator,	we	expect	the	probabilities	to	be	roughly	equal
for	each	value	in	p.	(NumPy	uses	the	Mersenne	Twister	pseudorandom	number
generator,	one	of	the	better	ones	out	there,	so	we’re	confident	that	we’ll	get	good
results.)

We	repeat	this	process,	substituting	binomial	for	randint,	sampling	from
binomial	distributions	using	probabilities	of	0.9	and	0.4.	Again,	histogramming
the	draws	and	converting	the	counts	to	fractions	gives	us	the	remaining
probability	distributions,	q	and	w,	based	on	0.9	and	0.4,	respectively.

We	are	finally	ready	to	measure	the	divergence.	The	rel_entr	function	is	a	bit
different	from	other	functions	in	that	it	does	not	return	DKL	directly.	Instead,	it
returns	a	vector	of	the	same	length	as	its	arguments,	where	each	element	of	the
vector	is	part	of	the	overall	sum	leading	to	DKL.	Therefore,	to	get	the	actual
divergence	number,	we	need	to	add	the	elements	of	this	vector.	So,	we	print	the
sum	of	the	output	of	rel_entr,	comparing	the	two	binomial	distributions	to	the



uniform	distribution.
The	random	nature	of	the	draws	means	we’ll	get	slightly	different	numbers

each	time	we	run	the	code.	One	run	gave

Distributions Divergence
DKL(Q||P) 1.1826
DKL(W||P) 0.6218

This	shows	that	the	binomial	distribution	with	probability	0.9	diverges	more
from	a	uniform	distribution	than	the	binomial	distribution	with	probability	0.4.
Recall,	the	smaller	the	divergence,	the	closer	the	two	probability	distributions
are	to	each	other.

Do	we	believe	this	result?	One	way	to	check	is	visually,	by	plotting	the	three
distributions	and	seeing	if	B(12,	0.4)	looks	more	like	a	uniform	distribution	than
B(12,	0.9)	does.	This	leads	to	Figure	6-1.



Figure	6-1:	Three	different,	discrete	probability	distributions:	uniform	(forward	hash),	B(12,0.4)
(backward	hash),	and	B(12,0.9)	(horizontal	hash)

Although	it	is	clear	that	neither	binomial	distribution	is	particularly	uniform,
the	B(12,	0.4)	distribution	is	relatively	centered	in	the	range	and	spread	across
more	values	than	the	B(12,	0.9)	distribution	is.	It	seems	reasonable	to	think	of
B(12,	0.4)	as	more	like	the	uniform	distribution,	which	is	precisely	what	the	KL-
divergence	told	us	by	returning	a	smaller	value.

We	now	have	everything	we	need	to	implement	principal	component
analysis.

Principal	Component	Analysis
Assume	we	have	a	matrix,	X,	representing	a	dataset.	We	understand	that	the
variance	of	each	of	the	features	need	not	be	the	same.	If	we	think	of	each
observation	as	a	point	in	an	n-dimensional	space,	where	n	is	the	number	of
features	in	each	observation,	we	can	imagine	a	cloud	of	points	with	a	different
amount	of	scatter	in	different	directions.

Principal	component	analysis	(PCA)	is	a	technique	to	learn	the	directions	of
the	scatter	in	the	dataset,	starting	with	the	direction	aligned	along	the	greatest
scatter.	This	direction	is	called	the	principal	component.	You	then	find	the
remaining	components	in	order	of	decreasing	scatter,	with	each	new	component
orthogonal	to	all	the	others.	The	top	part	of	Figure	6-2	shows	a	2D	dataset	and
two	arrows.	Without	knowing	anything	about	the	dataset,	we	can	see	that	the
largest	arrow	points	along	the	direction	of	the	greatest	scatter.	This	is	what	we
mean	by	the	principal	component.





Figure	6-2:	The	first	two	features	of	the	iris	dataset	and	principal	component	directions	(top),	and	the	iris
dataset	after	transformation	by	PCA	(bottom)

We	often	use	PCA	to	reduce	the	dimensionality	of	a	dataset.	If	there	are	100
variables	per	observation,	but	the	first	two	principal	components	explain	95
percent	of	the	scatter	in	the	data,	then	mapping	the	dataset	along	those	two
components	and	discarding	the	remaining	98	components	might	adequately
characterize	the	dataset	with	only	two	variables.	We	can	use	PCA	to	augment	a
dataset	as	well,	assuming	continuous	features.

So,	how	does	PCA	work?	All	this	talk	about	the	scatter	of	the	data	implies
that	PCA	might	be	able	to	make	use	of	the	covariance	matrix,	and,	indeed,	it
does.	We	can	break	the	PCA	algorithm	down	into	a	few	steps:

1.	 Mean	center	the	data.
2.	 Calculate	the	covariance	matrix,	Σ,	of	the	mean-centered	data.
3.	 Calculate	the	eigenvalues	and	eigenvectors	of	Σ.
4.	 Sort	the	eigenvalues	by	decreasing	absolute	value.
5.	 Discard	the	weakest	eigenvalues/eigenvectors	(optional).
6.	 Form	a	transformation	matrix,	W,	using	the	remaining	eigenvectors.
7.	 Generate	new	transformed	values	from	the	existing	dataset,	x′	=	Wx.	These

are	sometimes	referred	to	as	derived	variables.

Let’s	work	through	an	example	of	this	process	using	the	iris	dataset	(Listing
6-1).	We’ll	reduce	the	dimensionality	of	the	data	from	four	features	to	two.	First
the	code,	then	the	explanation:

			from	sklearn.datasets	import	load_iris
			iris	=	load_iris().data.copy()
❶	m	=	iris.mean(axis=0)
			ir	=	iris	-	m
❷	cv	=	np.cov(ir,	rowvar=False)
❸	val,	vec	=	np.linalg.eig(cv)
			val	=	np.abs(val)
❹	idx	=	np.argsort(val)[::-1]
			ex	=	val[idx]	/	val.sum()
			print("fraction	explained:	",	ex)
❺	w	=	np.vstack((vec[:,idx[0]],vec[:,idx[1]]))

❻	d	=	np.zeros((ir.shape[0],2))
			for	i	in	range(ir.shape[0]):
							d[i,:]	=	np.dot(w,ir[i])



Listing	6-1:	Principal	component	analysis	(PCA)

We	start	by	loading	the	iris	dataset,	courtesy	of	sklearn.	This	gives	us	iris	as	a
150	×	4	matrix,	since	there	are	150	observations,	each	with	four	features.	We
calculate	the	mean	value	of	each	feature	❶	and	subtract	it	from	the	dataset,
relying	on	NumPy’s	broadcasting	rules	to	subtract	m	from	each	row	of	iris.	We’ll
work	with	the	mean-centered	matrix	ir	going	forward.

The	next	step	is	to	compute	the	covariance	matrix	❷.	The	output,	cv,	is	a	4	×
4	matrix,	since	we	have	four	features	per	observation.	We	follow	this	by
calculating	the	eigenvalues	and	eigenvectors	of	cv	❸	and	then	take	the	absolute
value	of	the	eigenvalues	to	get	the	magnitude.	We	want	the	eigenvalues	in
decreasing	order	of	magnitude,	so	we	get	the	indices	that	sort	them	that	way	❹
using	the	Python	idiom	of	[::-1]	to	reverse	the	order	of	a	list	or	array.

The	magnitude	of	the	eigenvalues	is	proportional	to	the	fraction	of	the
variance	in	the	dataset	along	each	principal	component;	therefore,	if	we	scale	the
eigenvalues	by	their	overall	sum,	we	get	the	proportion	explained	by	each
principal	component	(ex).	The	fraction	of	variance	explained	is

fraction	explained:	[0.92461872	0.05306648	0.01710261	0.00521218]

indicating	that	two	principal	components	explain	nearly	98	percent	of	the
variance	in	the	iris	dataset.	Therefore,	we’ll	only	keep	the	first	two	principal
components	going	forward.

We	create	the	transformation	matrix,	w,	from	the	eigenvectors	that	go	with
the	two	largest	eigenvalues	❺.	Recall,	eig	returns	the	eigenvectors	as	the	columns
of	the	matrix	vec.	The	transformation	matrix,	w,	is	a	2	×	4	matrix	because	it	maps
a	four-component	feature	vector	to	a	new	two-component	vector.

All	that’s	left	is	to	create	a	place	to	hold	the	transformed	observations	and	fill
them	in	❻.	The	new,	reduced-dimension	dataset	is	in	d.	We	can	now	plot	the
entire	transformed	dataset,	labeling	each	point	by	the	class	to	which	it	belongs.
The	result	is	the	bottom	part	of	Figure	6-2.

In	the	top	part	of	Figure	6-2	is	a	plot	of	the	original	dataset	using	only	the
first	two	features.	The	arrows	indicate	the	first	two	principal	components,	and
the	size	of	the	arrows	shows	how	much	of	the	variance	in	the	data	these
components	explain.	The	first	component	explains	most	of	the	variance,	which
makes	sense	visually.

In	this	example,	the	derived	variables	in	the	bottom	part	of	Figure	6-2	have
made	the	dataset	easier	to	work	with,	as	the	classes	are	better	separated	than	on
the	top	using	only	two	of	the	original	features.	Sometimes,	PCA	makes	it	easier



for	a	model	to	learn	because	of	the	reduced	feature	vector	size.	However,	this	is
not	always	the	case.	During	PCA,	you	may	lose	a	critical	feature	allowing	class
separation.	As	with	most	things	in	machine	learning,	experimentation	is	vital.

PCA	is	commonly	used	and	is	therefore	well	supported	in	multiple	tool-kits.
Instead	of	the	dozen	or	so	lines	of	code	we	used	above,	we	can	accomplish	the
same	thing	by	using	the	PCA	class	from	the	sklearn.decomposition	module:

from	sklearn.decomposition	import	PCA
pca	=	PCA(n_components=2)
pca.fit(ir)
d	=	pca.fit_transform(ir)

The	new,	reduced-dimension	dataset	is	in	d.	Like	other	sklearn	classes,	after
we	tell	PCA	how	many	components	we	want	it	to	learn,	it	uses	fit	to	set	up	the
transformation	matrix	(w	in	Listing	6-1).	We	then	apply	the	transform	by	calling
fit_transform.

Singular	Value	Decomposition	and	Pseudoinverse
We’ll	end	this	chapter	with	an	introduction	to	singular	value	decomposition
(SVD).	This	is	a	powerful	technique	to	factor	any	matrix	into	the	product	of	three
matrices,	each	with	special	properties.	The	derivation	of	SVD	is	beyond	the
scope	of	this	book.	I	trust	motivated	readers	to	dig	into	the	vast	literature	on
linear	algebra	to	locate	a	satisfactory	presentation	of	where	SVD	comes	from
and	how	it	is	best	understood.	Our	goal	is	more	modest:	to	become	familiar	with
the	mathematics	found	in	deep	learning.	Therefore,	we’ll	content	ourselves	with
the	definition	of	SVD,	some	idea	of	what	it	gives	us,	some	of	its	uses,	and	how
to	work	with	it	in	Python.	For	deep	learning,	you’ll	most	likely	encounter	SVD
when	calculating	the	pseudoinverse	of	a	nonsquare	matrix.	We’ll	also	see	how
that	works	in	this	section.

The	output	of	SVD	for	an	input	matrix,	A,	with	real	elements	and	shape	m	×
n,	where	m	does	not	necessarily	equal	n	(though	it	could)	is

A	has	been	decomposed	into	three	matrices:	U,	Σ,	and	V.	Note	that	you	might
sometimes	see	V⊤	written	as	V*,	the	conjugate	transpose	of	V.	This	is	the	more
general	form	that	works	with	complex-valued	matrices.	We’ll	restrict	ourselves
to	real-valued	matrices,	so	we	only	need	the	ordinary	matrix	transpose.



The	SVD	of	an	m	×	n	matrix,	A,	returns	the	following:	U,	which	is	m	×	m
and	orthogonal;	Σ,	which	is	m	×	n	and	diagonal;	and	V,	which	is	n	×	n	and
orthogonal.	Recall	that	the	transpose	of	an	orthogonal	matrix	is	its	inverse,	so
UU⊤	=	Im	and	VV⊤	=	In,	where	the	subscript	on	the	identity	matrix	gives	the
order	of	the	matrix,	m	×	m	or	n	×	n.

At	this	point	in	the	chapter,	you	may	have	raised	an	eyebrow	at	the	statement
“Σ,	which	is	m	×	n	and	diagonal,”	since	we’ve	only	considered	square	matrices
to	be	diagonal.	Here,	when	we	say	diagonal,	we	mean	a	rectangular	diagonal
matrix.	This	is	the	natural	extension	to	a	diagonal	matrix,	where	the	elements	of
what	would	be	the	diagonal	are	nonzero	and	all	others	are	zero.	For	example,

is	a	3	×	5	rectangular	diagonal	matrix	because	only	the	main	diagonal	is	nonzero.
The	“singular”	in	“singular	value	decomposition”	comes	from	the	fact	that	the
elements	of	the	diagonal	matrix,	Σ,	are	the	singular	values,	the	square	roots	of
the	positive	eigenvalues	of	the	matrix	ATA.

SVD	in	Action
Let’s	be	explicit	and	use	SVD	to	decompose	a	matrix.	Our	test	matrix	is

We’ll	show	SVD	in	action	as	a	series	of	steps.	To	get	the	SVD,	we	use	svd
from	scipy.linalg,

>>>	from	scipy.linalg	import	svd
>>>	a	=	np.array([[3,2,2],[2,3,-2]])
>>>	u,s,vt	=	svd(a)

where	u	is	U,	vt	is	V⊤,	and	s	contains	the	singular	values:

>>>	print(u)
[[-0.70710678	-0.70710678]
	[-0.70710678		0.70710678]]
>>>	print(s)
[5.	3.]
>>>	print(vt)



[[-7.07106781e-01	-7.07106781e-01	-5.55111512e-17]
	[-2.35702260e-01		2.35702260e-01	-9.42809042e-01]
	[-6.66666667e-01		6.66666667e-01		3.33333333e-01]]

Let’s	check	that	the	singular	values	are	indeed	the	square	roots	of	the
positive	eigenvalues	of	ATA:

>>>	print(np.linalg.eig(a.T	@	a)[0])
[2.5000000e+01	5.0324328e-15	9.0000000e+00]

This	shows	us	that,	yes,	5	and	3	are	the	square	roots	of	25	and	9.	Recall	that	eig
returns	a	list,	the	first	element	of	which	is	a	vector	of	the	eigenvalues.	Also	note
that	there	is	a	third	eigenvalue:	zero.	You	might	ask:	“How	small	a	numeric
value	should	we	interpret	as	zero?”	That’s	a	good	question	with	no	hard	and	fast
answer.	Typically,	I	interpret	values	below	10−9	to	be	zero.

The	claim	of	SVD	is	that	U	and	V	are	unitary	matrices.	If	so,	their	products
with	their	transposes	should	be	the	identity	matrix:

>>>	print(u.T	@	u)
[[1.00000000e+00	3.33066907e-16]
	[3.33066907e-16	1.00000000e+00]]
>>>	print(vt	@	vt.T)
[[	1.00000000e+00		8.00919909e-17	-1.85037171e-17]
	[	8.00919909e-17		1.00000000e+00	-5.55111512e-17]
	[-1.85037171e-17	-5.55111512e-17		1.00000000e+00]]

Given	the	comment	above	about	numeric	values	that	we	should	interpret	as	zero,
this	is	indeed	the	identity	matrix.	Notice	that	svd	returned	V⊤,	not	V.	However,
since	(V⊤)⊤	=	V,	we’re	still	multiplying	V⊤V.

The	svd	function	returns	not	Σ	but	the	diagonal	values	of	Σ.	Therefore,	let’s
reconstruct	Σ	and	use	it	to	see	that	SVD	works,	meaning	we	can	use	U,	Σ,	and
V⊤	to	recover	A:

>>>	S	=	np.zeros((2,3))
>>>	S[0,0],	S[1,1]	=	s
>>>	print(S)
[[5.	0.	0.]
	[0.	3.	0.]]
>>>	A	=	u	@	S	@	vt
>>>	print(A)
[[	3.	2.	2.]
	[	2.	3.	-2.]]



This	is	the	A	we	started	with—almost:	the	recovered	A	is	no	longer	of	integer
type,	a	subtle	change	worth	remembering	when	writing	code.

Two	Applications
SVD	is	a	cute	trick,	but	what	can	we	do	with	it?	The	short	answer	is	“a	lot.”
Let’s	see	two	applications.	The	first	is	using	SVD	for	PCA.	The	sklearn	PCA	class
we	used	in	the	previous	section	uses	SVD	under	the	hood.	The	second	example
shows	up	in	deep	learning:	using	SVD	to	calculate	the	Moore-Penrose
pseudoinverse,	a	generalization	of	the	inverse	of	a	square	matrix	to	m	×	n
matrices.

SVD	for	PCA
To	see	how	to	use	SVD	for	PCA,	let’s	use	the	iris	data	from	the	previous	section
so	we	can	compare	with	those	results.	The	key	is	to	truncate	the	Σ	and	V⊤
matrices	to	keep	only	the	desired	number	of	largest	singular	values.	The
decomposition	code	will	put	the	singular	values	in	decreasing	order	along	the
diagonal	of	Σ	for	us,	we	need	only	retain	the	first	k	columns	of	Σ.	In	code,	then,

			u,s,vt	=	svd(ir)
❶	S	=	np.zeros((ir.shape[0],	ir.shape[1]))
			for	i	in	range(4):
							S[i,i]	=	s[i]
❷	S	=	S[:,	:2]
			T	=	u	@	S

Here,	we’re	using	ir	from	Listing	6-1.	This	is	the	mean-centered	version	of	the
iris	dataset	matrix,	with	150	rows	of	four	features	each.	A	call	to	svd	gives	us	the
decomposition	of	ir.	The	next	three	lines	❶	create	the	full	Σ	matrix	in	S.	Because
the	iris	dataset	has	four	features,	the	s	vector	that	svd	returns	will	have	four
singular	values.

The	truncation	comes	by	keeping	the	first	two	columns	of	S	❷.	Doing	this
changes	Σ	from	a	150	×	4	matrix	to	a	150	×	2	matrix.	Multiplying	U	by	the	new
Σ	gives	us	the	transformed	iris	dataset.	Since	U	is	150	×	150	and	Σ	is	150	×	2,
we	get	a	150	×	2	dataset	in	T.	If	we	plot	this	as	T[:,0]	versus	T[:,1],	we	get	the	exact
same	plot	as	the	bottom	part	of	Figure	6-2.

The	Moore-Penrose	Pseudoinverse
As	promised,	our	second	application	is	to	compute	A+,	the	Moore-Penrose



pseudoinverse	of	an	m	×	n	matrix	A.	The	matrix	A+	is	called	a	pseudo-inverse
because,	in	conjunction	with	A,	it	acts	like	an	inverse	in	that

where	AA+	is	somewhat	like	the	identity	matrix,	making	A+	somewhat	like	the
inverse	of	A.

Knowing	that	the	pseudoinverse	of	a	rectangular	diagonal	matrix	is	simply
the	reciprocal	of	the	diagonal	values,	leaving	zeros	as	zero,	followed	by	a
transpose,	we	can	calculate	the	pseudoinverse	of	any	general	matrix	as

A+	=	VΣ+	U*

for	A	=	UΣV*,	the	SVD	of	A.	Notice,	we’re	using	the	conjugate	transpose,	V*,
instead	of	the	ordinary	transpose,	V⊤.	If	A	is	real,	then	the	ordinary	transpose	is
the	same	as	the	conjugate	transpose.

Let’s	see	if	the	claim	regarding	A+	is	true.	We’ll	start	with	the	A	matrix	we
used	in	the	section	above,	compute	the	SVD,	and	use	the	parts	to	find	the
pseudoinverse.	Finally,	we’ll	validate	Equation	6.11.

We’ll	start	with	A,	the	same	array	we	used	above	for	the	SVD	example:

>>>	A	=	np.array([[3,2,2],[2,3,-2]])
>>>	print(A)
[[	3	2		2]
	[	2	3	-2]]

Applying	SVD	will	give	us	U	and	V⊤	along	with	the	diagonal	of	Σ.	We’ll	use
the	diagonal	elements	to	construct	Σ+	by	hand.	Recall,	Σ+	is	the	transpose	of	Σ,
where	the	diagonal	elements	that	are	not	zero	are	changed	to	their	reciprocals:

>>>	u,s,vt	=	svd(A)
>>>	Splus	=	np.array([[1/s[0],0],[0,1/s[1]],[0,0]])
>>>	print(Splus)
[[0.2								0.								]
	[0.									0.33333333]
	[0.									0.								]]

Now	we	can	calculate	A+	and	verify	that	AA+A	=	A:

>>>	Aplus	=	vt.T	@	Splus	@	u.T
>>>	print(Aplus)



[[	0.15555556		0.04444444]
	[	0.04444444		0.15555556]
	[	0.22222222	-0.22222222]]
>>>	print(A	@	Aplus	@	A)
[[	3.	2.		2.]
	[	2.	3.	-2.]]

And,	in	this	case,	AA+	is	the	identity	matrix:

>>>	print(A	@	Aplus)
[[1.00000000e+00	5.55111512e-17]
	[1.66533454e-16	1.00000000e+00]]

This	concludes	our	whirlwind	look	at	SVD	and	our	discussion	of	linear
algebra.	We	barely	scratched	the	surface,	but	we’ve	covered	what	we	need	to
know.

Summary
This	heavy	chapter	and	Chapter	5	before	it	plowed	through	a	lot	of	linear
algebra.	As	a	mathematical	topic,	linear	algebra	is	vastly	richer	than	our
presentation	here.

We	focused	the	chapter	on	square	matrices,	as	they	have	a	special	place	in
linear	algebra.	Specifically,	we	discussed	general	properties	of	square	matrices,
with	examples.	We	learned	about	eigenvalues	and	eigenvectors,	how	to	find
them,	and	why	they	are	useful.	Next,	we	looked	at	vector	norms	and	other	ways
to	measure	distance,	as	they	show	up	often	in	deep	learning.	Finally,	we	ended
the	chapter	by	learning	what	PCA	is	and	how	it	works,	followed	by	a	look	at
singular	value	decomposition,	with	two	applications	relevant	to	deep	learning.

The	next	chapter	shifts	gears	and	covers	differential	calculus.	This	is,
fortunately,	the	“easy”	part	of	calculus,	and	is,	in	general,	all	that	we	need	to
understand	the	algorithms	specific	to	deep	learning.	So,	fasten	your	seat	belts,
make	sure	your	arms	and	legs	are	fully	within	the	vehicle,	and	prepare	for
departure	to	the	world	of	differential	calculus.



7
DIFFERENTIAL	CALCULUS

The	discovery	of	“the	calculus”	by	Sir	Issac	Newton,	and	separately	by	Gottfried
Wilhelm	Leibniz,	was	one	of	the	greatest	achievements	in	the	history	of
mathematics.	Calculus	is	typically	split	into	two	main	parts:	differential	and
integral.	Differential	calculus	talks	about	rates	of	change	and	their	relationships,
embodied	in	the	notion	of	the	derivative.	Integral	calculus	is	concerned	with
things	like	the	area	under	a	curve.

We	don’t	need	integral	calculus	for	deep	learning,	but	we’ll	use	differential
calculus	often.	For	example,	we	use	differential	calculus	to	train	neural
networks;	we	adjust	the	weights	of	a	neural	network	using	gradient	descent,
which	relies	on	derivatives	calculated	via	the	backpropagation	algorithm.

The	derivative	will	be	the	star	of	this	chapter.	We’ll	begin	by	introducing	the
idea	of	slope	and	seeing	how	it	leads	to	the	notion	of	a	derivative.	We’ll	then
formally	define	the	derivative	and	learn	how	to	calculate	derivatives	of	functions
of	one	variable.	After	that,	we’ll	learn	how	to	use	derivatives	to	find	the	minima
and	maxima	of	functions.	Next	come	partial	derivatives,	the	derivatives	with
respect	to	a	single	variable	for	functions	of	more	than	one	variable.	We’ll	use
partial	derivatives	extensively	in	the	backpropagation	algorithm.	We’ll	conclude
with	gradients,	which	will	introduce	us	to	matrix	calculus,	the	subject	of	Chapter
8.

Slope
In	algebra	class,	we	learned	all	about	lines.	One	way	to	define	a	line	is	the	slope-
intercept	form,



intercept	form,

y	=	mx	+	b

where	m	is	the	slope	and	b	is	the	y	intercept,	the	place	where	the	line	crosses	the
y-axis.	We’re	interested	in	the	slope.	If	we	know	two	points	on	the	line,	(x1,	y1)
and	(x0,	y0),	we	know	the	slope	of	the	line:

The	slope	tells	us	how	much	of	a	change	in	y	we	will	get	for	any	given
change	in	x	position.	If	the	slope	is	positive,	then	a	positive	change	in	x	leads	to
a	positive	change	in	y.	On	the	other	hand,	a	negative	slope	means	that	a	positive
change	in	x	leads	to	a	negative	change	in	y.

The	slope-intercept	form	of	the	line	tells	us	that	the	slope	is	the
proportionality	constant	between	x	and	y.	The	intercept,	b,	is	a	constant	offset.
This	means	a	change	in	x	position	from	x1	to	x0	leads	to	an	m(x1	−	x0)	change	in
y.	Slopes	relate	two	things,	telling	us	how	changing	one	affects	the	other.	We’ll
get	back	to	this	idea	several	times	in	the	book.

Now,	let’s	visualize	this	with	some	examples.	Figure	7-1	shows	the	plot	of	a
curve	and	some	lines	that	intersect	it.



Figure	7-1:	A	curve	with	a	secant	line	(A)	and	a	tangent	line	(B)

The	line	labeled	A	crosses	the	curve	at	two	points,	x1	and	x0.	A	line	passing
between	two	points	on	a	curve	is	called	a	secant	line.	The	other	line,	B,	just
touches	the	curve	at	the	point	xt.	Lines	that	touch	a	curve	at	one	point	are	called
tangent	lines.	We’ll	get	back	to	secant	lines	in	the	next	section,	but,	for	now,
notice	that	the	tangent	line	has	a	particular	slope	at	xt	and	that	a	secant	line
becomes	a	tangent	line	as	the	distance	between	the	points	x1	and	x0	goes	toward
zero.

Imagine	that	we	move	the	point	xt	from	place	to	place	along	the	curve;	we
can	see	that	the	slope	of	the	tangent	line	at	xt	would	change	with	it.	As	we
approach	the	minimum	point	of	the	curve,	near	x	=	0.3,	we	see	that	the	slope
becomes	more	and	more	shallow.	If	we	approach	from	the	left,	the	slope	is
negative	and	becomes	less	and	less	negative.	If	we	approach	from	the	right,	the
slope	is	positive	but	becomes	smaller	and	smaller.	At	the	actual	minimum	point,
near	x	=	0.3,	the	tangent	line	is	horizontal,	with	a	slope	of	zero.	Similarly,	if	we
approach	the	maximum	of	the	curve,	near	x	=	−0.8,	the	slope	also	approaches
zero.



We	can	see	that	the	tangent	line	tells	us	how	the	curve	is	changing	at	a	point.
As	we’ll	see	later	in	the	chapter,	the	fact	that	the	slope	of	a	tangent	line	is	zero	at
the	minima	and	maxima	of	a	curve	points	us	toward	a	method	for	finding	these
points.	The	points	where	the	slope	of	the	tangent	line	is	zero	are	known	as
stationary	points.

Of	course,	to	take	advantage	of	the	slope	of	the	tangent	line,	we	need	to	be
able	to	find	its	value	for	any	x	on	the	curve.	The	next	section	will	show	us	how.

Derivatives
The	previous	section	introduced	the	idea	of	secant	and	tangent	lines	and	hinted
that	knowing	the	slope	of	the	tangent	line	at	any	point	on	a	curve	is	a	potentially
useful	thing.	The	slope	of	the	tangent	line	at	a	point	x	is	known	as	the	derivative
at	x.	It	tells	us	how	the	curve	(function)	is	changing	at	the	point	x,	that	is,	how
the	function	value	changes	with	an	infinitesimal	change	in	x.	In	this	section,
we’ll	formally	define	the	derivative	and	learn	shortcut	rules	for	calculating
derivatives	of	functions	of	a	single	variable,	x.

A	Formal	Definition
A	typical	first-semester	calculus	course	introduces	you	to	derivatives	through
studying	limits.	I	mentioned	above	how	the	slope	of	the	secant	line	between	two
points	on	a	curve	becomes	a	tangent	line	when	the	points	collapse	on	top	of	each
other,	and	that’s	one	place	where	limits	come	into	play.

For	example,	if	y	=	f(x)	is	a	curve,	and	we	have	two	points	on	the	curve,	x0
and	x1,	then	the	slope,	Δy/Δx,	between	these	points	is

This	is	the	rise	over	run	you	may	remember	learning	in	school.	The	rise,	Δy	=	y1
−	y0	=	f(x1)	−	f(x0),	is	divided	by	the	run,	Δx	=	x1	−	x0.	We	typically	use	Δ	as	a
prefix	to	mean	the	change	in	some	variable.

If	we	define	h	=	x1	−	x0,	we	can	rewrite	Equation	7.1	as



since	x1	=	x0	+	h.
In	this	new	form,	we	can	find	the	slope	of	the	tangent	line	at	x0	by	letting	h

get	closer	and	closer	to	zero,	h	→	0.	Letting	a	value	approach	another	value	is	a
limit.	Letting	h	→	0	moves	the	two	points	we’re	calculating	the	slope	between
closer	and	closer.	This	leads	directly	to	the	definition	of	the	derivative

where	dy/dx	or	f′(x)	is	used	to	represent	the	derivative	of	f(x).
Before	we	get	into	what	the	derivative	means,	let’s	take	a	minute	to	discuss

notation.	Using	f′(x)	for	the	derivative	follows	Joseph-Louis	Lagrange.	Leibniz
used	dy/dx	to	mirror	the	notation	for	slope	with	Δ	→	d.	If	Δy	is	a	change	in	y
between	two	points,	dy	is	the	infinitesimal	change	in	y	at	a	single	point.	Newton
used	yet	another	notation,	 ,	with	the	dot	representing	the	derivative	of	f.
Physicists	often	use	Newton’s	notation	for	the	specific	case	of	derivatives	with
respect	to	time.	For	example,	if	f(t)	is	the	position	of	a	particle	as	a	function	of
time,	t,	then	 	is	the	derivative	with	respect	to	t,	that	is,	how	the	position	is
changing	in	time.	How	a	position	changes	in	time	is	the	speed	(velocity	if	using
vectors).	You’ll	see	all	of	these	notations	in	books.	My	preference	is	to	preserve	
	for	functions	of	time	and	use	Lagrange’s	f′(x)	and	Leibniz’s	dy/dx

interchangeably	elsewhere.
Although	Equation	7.2	above	is	quite	tedious	and	the	bane	of	many

beginning	calculus	students,	at	least	until	they	hit	integration,	you	could	work
with	it	if	you	had	to.	However,	we	won’t	discuss	integration	at	all	in	this	book,
so	you	can	take	a	deep	breath	and	relax.

After	the	struggle	with	limits,	calculus	students	are	let	in	on	a	secret:	a	small
set	of	rules	will	allow	you	to	calculate	virtually	all	derivatives	without	using
limits.	We’ll	start	by	introducing	these	rules,	one	at	a	time	with	examples,	and
then,	at	the	end	of	this	section,	we’ll	put	them	all	together	in	a	form	suitable	for	a
T-shirt.

However,	before	we	dive	into	the	rules,	let’s	spend	a	little	more	time
discussing	what	the	derivative	is	telling	us.	Above,	I	mentioned	that	how	a
position	changes	in	time	is	given	by	the	derivative.	This	is	true	of	all	derivatives;
they	tell	us	how	something	is	changing	with	respect	to	how	something	else	is
changing.	We	even	see	this	in	Leibniz’s	notation,	dy/dx,	how	dy	changes	for	a
change	in	dx.	The	derivative	at	x	tells	us	how	the	function	is	changing	at	x.	As



we’ll	see,	the	derivative	of	f(x)	is	itself	a	new	function	of	x.	If	we	pick	a	specific
x0,	then	we	know	that	f(x0)	is	the	value	of	the	function	at	x0.

Similarly,	if	we	know	the	derivative,	then	f′(x0)	is	how	quickly,	and	in	which
direction,	the	function,	f(x),	is	changing	at	x0.	Consider	the	definition	of	speed	as
how	the	position	changes	with	time.	We	even	say	it	in	words:	my	current	speed
is	30	mph—miles	per	hour—a	change	in	position	with	respect	to	a	change	in
time.

We’ll	use	derivatives	like	rates	and	see	how	changing	one	thing	affects
another.	In	the	end,	for	deep	learning,	we	want	to	know	how	changing	the	value
of	a	parameter	in	a	network	will	ultimately	change	the	loss	function,	the	error
between	what	the	network	should	have	output	and	what	it	actually	output.

If	f′(x)	is	a	function	of	x,	then	we	should	be	able	to	take	the	derivative	of	it.
We	call	f′(x)	the	first	derivative.	Its	derivative,	which	we	denote	as	f′′(x),	is	the
second	derivative.	In	Leibniz’s	notation,	we	write	d2y/dx2.	The	second	derivative
tells	us	how	the	first	derivative	is	changing	with	respect	to	x.	Physics	helps	here.
The	first	derivative	of	the	position	as	a	function	of	time	(f)	is	the	velocity,	 —
how	the	position	is	changing	with	time.	Therefore,	the	second	derivative	of	the
position,	 ,	which	is	the	first	derivative	of	the	velocity,	is	how	the	velocity	is
changing	with	time.	We	call	this	the	acceleration.

In	theory,	there	is	no	end	to	how	many	derivatives	we	can	calculate.	In
reality,	many	functions	ultimately	end	up	with	a	derivative	that	is	a	constant
value.	Since	a	constant	value	doesn’t	change,	its	derivative	is	zero.

To	sum	up,	the	derivative	of	f(x)	is	another	function,	f′(x)	or	dy/dx,	that	tells
us	the	slope	of	the	line	tangent	to	f(x)	at	every	point.	And,	since	f′(x)	is	a	function
of	x,	it	also	has	a	derivative,	f′′(x)	or	d2y/dx2,	the	second	derivative,	telling	us
how	f′(x)	changes	at	each	x,	and	so	on.	We’ll	see	below	how	to	make	use	of	first
and	second	derivatives.	For	now,	let’s	learn	the	rules	of	differentiation,	the	act	of
calculating	a	derivative.

Basic	Rules
We	mentioned	one	rule	in	the	previous	section:	that	the	derivative	of	a	constant,
c,	is	zero.	So,	we	write

where	we’re	using	Leibniz’s	notation	in	operator	form:	d/dx.	Think	of	d/dx	as



something	operating	on	what	follows;	it	does	this	the	same	way	that	negation
does:	to	negate	c,	we	write	−c;	to	differentiate	c,	we	write	 .	If	our	expression
has	no	x,	then	we	will	treat	it	as	a	constant,	and	the	derivative	will	be	zero.

The	Power	Rule
The	derivative	of	a	power	of	x	uses	the	power	rule,

where	a	is	a	constant	and	n	is	an	exponent	that	doesn’t	need	to	be	an	integer.
Let’s	see	some	examples:

We	often	build	algebraic	expressions	out	of	terms	that	are	added	and
subtracted.	Differentiation	is	a	linear	operator,	so	we	can	write

This	means	we	calculate	derivatives	term	by	term.	For	example,	with	the	set	of
rules	we	have	so	far,	we	now	know	how	to	calculate	the	derivative	of	a
polynomial:



In	general,	then,

where	we	see	that	the	derivative	of	a	polynomial	of	degree	n	is	another
polynomial	of	degree	n	−	1	and	that	any	constant	term	in	the	original	polynomial
drops	to	zero.

The	Product	Rule
Differentiation	of	functions	multiplied	together	has	its	own	rule,	the	product
rule:

The	derivative	of	the	product	is	the	derivative	of	the	first	function	times	the
second	plus	the	derivative	of	the	second	times	the	first.	Consider	the	following
examples:



The	Quotient	Rule
The	derivative	of	a	function	divided	by	another	function	follows	the	quotient
rule:

This	leads	to	examples	like	these:

The	Chain	Rule
The	next	rule	concerns	the	composition	of	functions.	Two	functions	are



composed	when	the	output	of	one	is	used	as	the	input	to	another.	The	chain	rule
applies	to	function	compositions,	and	it’s	of	fundamental	importance	in	the
training	of	neural	networks.	The	rule	is

We	multiply	the	derivative	of	the	outer	function,	using	g(x)	as	the	variable,	by
the	derivative	of	the	inner	function	with	respect	to	x.

As	a	first	example,	consider	the	function	f(x)	=	(x2	+	2x	+	3)2.	Is	this	the
composition	of	two	functions?	It	is.	Let’s	define	f(g)	=	g2	and	g(x)	=	x2	+	2x	+	3.
Then,	we	can	find	f(x)	by	replacing	every	instance	of	g	in	f(g)	with	the	definition
of	g	in	terms	of	x:	g(x)	=	x2	+	2x	+	3.	This	gives

f(x)	=	g2	=	(x2	+	2x	+	3)2

which	is,	naturally,	what	we	started	with.	To	find	f′(x),	we	first	find	f′(g),	the
derivative	of	f	with	respect	to	g,	and	then	multiply	by	g′(x),	the	derivative	of	g
with	respect	to	x.	As	a	final	step,	we	replace	references	to	g	with	its	definition	in
terms	of	x.	So,	we	calculate	f′(x)	as

We	typically	don’t	explicitly	call	out	f(g)	and	g(x),	but	mentally	we	work
through	the	same	process.	Let’s	see	some	more	examples.	In	this	one,	we	want
to	find

If	we	use	the	chain	rule,	we	see	that	we	have	f(g)	=	2g2	+	3	and	g(x)	=	4x	−	5.
Therefore,	we	can	write



where	f′(g)	=	2g	and	g′(x)	=	4.	With	some	practice,	we’d	mentally	picture	the	4x
−	5	of	f(x)	as	its	own	variable	(the	substitution	of	g)	and	then	remember	to
multiply	the	derivative	of	4x	−	5	when	done.	What	if	we	didn’t	see	the
composition?	What	if	we	expanded	the	entire	function,	f(x),	and	then	took	the
derivative?	We’d	better	get	the	answer	we	found	above	by	using	the	chain	rule.
Let’s	see	.	.	.

This	is	what	we	found	above,	so	our	application	of	the	chain	rule	is	correct.

Let’s	look	at	another	example.	If	 ,	how	should	we	think	of

calculating	the	derivative?	If	we	look	at	the	function	as	 ,	with	u(x)	=
1	and	v(x)	=	3x2,	we	can	use	the	quotient	rule	and	get	the	following.



Here,	we	used	a	shorthand	notation	with	u	and	v	that	drops	the	formal	function
of	x	notation.

We	can	also	picture	f(x)	as	(3x2)−1.	If	we	think	of	it	this	way,	we	can	apply
the	chain	rule	and	power	rule	to	get

proving	that	sometimes	there’s	more	than	one	way	to	calculate	a	derivative.
We	presented	the	chain	rule	using	Lagrange’s	notation.	Later	in	the	chapter,

we’ll	see	it	again	using	Leibniz’s	notation.	Let’s	move	on	now	and	present	a	set
of	rules	for	trigonometric	functions.

Rules	for	Trigonometric	Functions
The	derivatives	of	the	basic	trigonometric	functions	are	straightforward:



We	can	see	the	last	rule	is	correct	if	we	apply	the	basic	differentiation	rules
to	the	definition	of	the	tangent:

Remember	that	sec	x	=	1/	cos	x	and	sin2	x	+	cos2	x	=	1.
Let’s	look	at	some	examples	using	the	new	trig	rules.	We’ll	start	with	one

composing	a	function	with	a	trig	function:

We	can	see	that	this	is	a	composition	of	f(g)	=	sin(g)	and	g(x)	=	x3	−	3x,	so
we	know	we	can	apply	the	chain	rule	to	get	the	derivative	as	f′(g)g′(x)	with	f′(g)
=	cos(g)	and	g′(x)	=	3x2	−	3.	The	second	line	simplifies	the	answer.

Let’s	look	at	a	more	complicated	composition:



This	time,	we	break	up	the	composition	as	f(g)	=	g2	and	g(x)	=	sin(x3	−	3x).
However,	g(x)	is	itself	a	composition	of	g(u)	=	sin(u)	and	u(x)	=	x3	−	3x,	as	we
had	in	the	previous	example.	So,	the	first	step	is	to	write	the	following.

The	first	line	is	the	definition	of	the	derivative	of	a	composition.	The	second	line
substitutes	the	derivative	of	f(g),	which	is	2g,	and	the	third	line	replaces	g(x)
with	sin(x3	−	3x).	Now,	we	just	need	to	find	g′(x),	which	we	can	do	by	using	the
chain	rule	a	second	time	with	g(u)	=	sin	u	and	u(x)	=	x3	−	3x,	as	we	did	for	the
example	above.	Doing	this	gives	us	g′(x)	=	cos(x3	−	3x)(3x2	−	3),	so	now	we
know	that	f′(x)	is

Let’s	do	one	more	example.	This	one	will	involve	more	than	one	trig
function.	We	want	to	see	how	to	calculate

As	is	often	the	case	when	working	with	trig	functions,	identities	come	into
play.	Here,	we	see	that	f(x)	can	be	rewritten:



Now	the	derivative	uses	the	trig	rules,	the	definition	of	the	secant,	the	chain	rule,
and	the	product	rule,	as	shown	next.

Let’s	move	on	and	look	at	derivatives	of	exponentials	and	logarithms.

Rules	for	Exponentials	and	Logarithms
The	derivative	of	ex,	where	e	is	the	base	of	the	natural	logarithm	(e	≈	2.718	.	.	.),
is	particularly	simple.	It	is	itself:

When	the	argument	is	a	function	of	x,	this	becomes

If	the	derivative	of	ex	is	ex,	what	is	the	derivative	of	ax	when	a	is	a	real	number



other	than	e?	To	see	the	answer,	we	need	to	remember	that	ex	and	ln	x,	the
natural	logarithm	using	base	e,	are	inverse	functions,	so	elna	=	a.	Then,	we	can
write

ax	=	(eln	a)x	=	exln	a

We	know	how	to	find	the	derivative	of	exlna	from	Equation	7.3	above.	It	is

but	e	x	ln	a	=	ax,	so	we	have

and,	in	general,

Notice,	if	a	=	e,	we	have	ln(e)	=	1,	and	Equation	7.4	becomes	Equation	7.3.
Let’s	look	now	at	the	derivative	of	the	natural	log	itself.	It	is

When	the	argument	is	a	function	of	x,	this	becomes

You	may	be	wondering:	How	do	we	find	the	derivative	of	a	logarithm	that
uses	a	base	other	than	e?	For	example,	what	is	the	derivative	of	log10	x?	To
answer	this	question,	we	do	something	similar	to	what	we	did	above	for	the
derivative	of	ax.	We	write	the	logarithm	of	x	for	some	base,	b,	in	terms	of	the
natural	log,	as

Here,	ln	b	is	a	constant	that	does	not	depend	on	x.	Also,	we	now	know	how	to



find	the	derivative	of	ln	x,	so	we	see	that	the	derivative	of	logb	x	must	be

for	any	real	number	base	b	≠	1.	And,	still	more	generally,

where,	again,	we	notice	that	if	b	=	e,	we	get	ln	e	=	1,	and	Equation	7.6	becomes
Equation	7.5.

With	Equation	7.6,	we’ve	reached	the	end	of	our	rules	for	derivatives.	Let’s
now	put	them	together	in	a	single	table	we	can	refer	back	to	throughout	the
remainder	of	the	book.	The	result	is	Table	7-1.

We	know	how	to	find	derivatives	now.	I	would	encourage	you	to	look	for
practice	sheets	with	worked-out	answers	to	convince	yourself	that	you
understand	the	rules	and	how	to	apply	them.	Let’s	move	on	and	look	at	how	we
can	use	derivatives	to	find	the	minima	and	maxima	of	functions.	Finding	minima
is	critical	to	the	training	of	neural	networks.

Table	7-1:	The	Rules	of	Differentiation

Type Rule
Constants

Powers

Sums

Products

Quotients

Chain

Trigonometry

Exponents



Exponents

Logarithms

Minima	and	Maxima	of	Functions
Earlier,	I	defined	stationary	points	as	places	where	the	first	derivative	of	a
function	is	zero,	that	is,	places	where	the	slope	of	the	tangent	line	is	zero.	We
can	use	this	information	to	decide	if	a	particular	point,	call	it	xm,	is	a	minimum
or	maximum	of	the	function,	f(x).	If	xm	is	a	minimum,	it	is	a	low	point	of	the
function,	where	f(xm)	is	smaller	than	any	point	to	the	immediate	left	or	right	of	f
(xm).	Similarly,	if	f(xm)	is	higher	than	any	point	to	the	immediate	left	or	right,
f(xm)	is	a	maximum.	We	collectively	refer	to	minima	and	maxima	as	extrema	of
f(x)	(singular,	extremum).

In	terms	of	the	derivative,	a	minimum	is	a	place	where	the	derivative	of
points	immediately	to	the	left	of	xm	are	negative,	and	derivatives	of	points
directly	to	the	right	of	xm	are	positive.	Maxima	are	the	reverse:	derivatives	to	the
left	are	positive,	and	derivatives	to	the	right	of	xm	are	negative.

Look	back	at	Figure	7-1.	There,	we	have	a	local	maximum	at	about	x	=	−0.8
and	a	local	minimum	at	about	x	=	0.3.	Let’s	say	that	the	maximum	is	actually	at
xm	=	−0.8.	This	is	a	maximum	because	if	we	look	at	any	point	xp	in	the	vicinity
of	xm,	f(xp)	is	less	than	f(xm).	Likewise,	if	the	minimum	is	at	xm	=	0.3,	that’s
because	any	point	xp	near	it	has	f(xp)	>	f(xm).	If	we	imagine	the	tangent	line
sliding	along	the	graph,	as	it	approaches	x	=	−0.8,	we	see	that	the	slope	is
positive	but	heading	toward	zero.	If	we	move	past	x	=	−0.8,	the	slope	is	now
negative.	The	reverse	is	true	for	the	minimum	at	x	=	0.3.	Tangent	lines
approaching	from	the	left	have	negative	slope,	but	once	they’re	past	x	=	0.3,	the
slope	is	positive.

You’ll	read	and	hear	the	terms	global	and	local	applied	to	minima	and
maxima.	The	global	minimum	of	f(x)	is	the	lowest	of	all	the	minima	of	f(x),	and



the	global	maximum	is	the	highest	of	all	the	maxima.	Other	minima	and
maxima,	then,	are	considered	local;	they	are	effective	over	a	particular	region,
but	there	are	other	minima	that	are	lower	or	maxima	that	are	higher.	We	should
note	that	not	all	functions	have	minima	or	maxima.	For	example,	a	line,	f(x)	=
mx	+	b,	has	no	minima	or	maxima,	because	there	are	no	points	on	the	line	that
satisfy	the	requirements	for	either.

So,	if	the	first	derivative,	f′(x),	is	zero,	we	have	a	minimum	or	maximum,
right?	Not	so	fast.	At	other	stationary	points,	the	first	derivative	may	be	zero,	but
the	remaining	criteria	for	a	minimum	or	maximum	are	not	met.	These	points	are
often	called	inflection	points	or,	if	in	multiple	dimensions,	saddle	points.	For
example,	consider	y	=	x3.	The	first	derivative	is	y′	=	3x2,	and	the	second
derivative	is	y′′	=	6x.	Both	the	first	and	second	derivative	are	zero	at	x	=	0.
However,	as	we	can	see	in	Figure	7-2,	the	slope	is	positive	to	both	the	immediate
left	and	immediate	right	of	x	=	0.	Therefore,	the	slope	never	switches	from
positive	to	negative	or	negative	to	positive,	meaning	x	=	0	is	not	an	extremum
but	is	an	inflection	point.

Figure	7-2:	A	graph	of	y	=	x3	showing	an	inflection	point	at	x	=	0

Now	assume	that	xs	is	a	stationary	point	so	that	f′(xs)	=	0.	If	we	pick	two
other	points,	xs−∊	and	xs+∊,	one	just	to	the	left	of	xs	and	the	other	just	to	the
right,	for	some	very	small	∊	(epsilon),	we	have	four	possibilities	for	the	values
of	f′(xs−∊)	and	f′(xs+∊),	shown	in	Table	7-2.



Table	7-2:	Identifying	Stationary	Points

Sign	of	f’(xs	–	∊),	f’(xs	+	∊) Type	of	stationary	point	at	xs	–	∊	
<	xs	<	xs	+	∊

+,	– Maximum
–,	+ Minimum
+,	+ Neither
–,	– Neither

Therefore,	the	value	of	the	first	derivative	at	a	candidate	stationary	point
isn’t	enough	to	tell	us	whether	the	point	represents	a	minimum	or	maximum.	We
can	look	at	the	region	around	the	candidate	point	to	help	us	decide.	We	can	also
look	at	the	value	of	f′′(x),	the	second	derivative	of	f(x).	If	xs	is	a	stationary	point
where	f′(xs)	=	0,	the	sign	of	f′′(xs)	can	tell	us	about	what	type	of	stationary	point
xs	might	be.	If	f′′(xs)	<	0,	then	xs	is	a	maximum	of	f(x).	If	f′′(xs)	>	0,	xs	is	a
minimum.	If	f′′(xs)	=	0,	the	second	derivative	isn’t	helpful;	we	will	need	to
explicitly	test	nearby	points	with	the	first	derivative.

How	do	we	find	candidate	stationary	points	in	the	first	place?	For	algebraic
functions,	we	solve	f′(x)	=	0;	we	find	the	solution	set	of	all	the	x	values	that	make
the	first	derivative	of	f(x)	zero.	We	then	use	the	derivative	tests	to	decide	which
are	minima,	maxima,	or	inflection	points.

For	many	functions,	we	can	find	the	solutions	to	f′(x)	=	0	directly.	For
example,	if	f(x)	=	x3	−	2x	+	4,	we	have	f′(x)	=	3x2	−	2.	If	we	set	this	equal	to	zero,
3x2	−	2	=	0,	and	solve	using	the	quadratic	formula,	we	find	that	there	are	two

stationary	points:	 	and	 .	The	second	derivative	of	f(x)
is	f′′(x)	=	6x.	The	sign	of	f′′(x0)	is	negative;	therefore,	x0	represents	a	maximum.
And	because	the	sign	of	f′′(x1)	is	positive,	x1	is	a	minimum.

We	can	see	that	the	derivative	tests	are	correct.	The	top	of	Figure	7-3	shows
us	a	plot	of	f(x)	=	x3	−	2x	+	4,	where	x0	is	a	maximum	and	x1	is	a	minimum.

Let’s	look	at	one	more	example.	This	time,	we	have	f(x)	=	x5−2x3+x+2,	the
bottom	plot	of	Figure	7-3.	We	find	the	first	derivative	and	set	it	to	zero:

f′(x)	=	5x4	−	6x2	+	1	=	0

If	we	substitute	u	=	x2,	we	can	solve	for	the	roots	of	f′(x)	by	finding	the	roots



of	5u2−6u+1	and	setting	those	equal	to	x2.	Doing	this	gives	us	 	and	

,	so	we	have	four	stationary	points.	To	test	them,	we	can	use	the
second	derivative	test.	The	second	derivative	is	f′′(x)	=	20x3	−	12x.
Substituting	the	stationary	points	into	f′′	gives

meaning	x0	is	a	maximum,	x1	is	a	minimum,	x2	is	another	maximum,	and	x3	is	a
minimum.	Figure	7-3	again	confirms	our	conclusions.



Figure	7-3:	Plots	of	f(x)	=	x3	–	2x	+	4	(top)	and	x5	–	2x3	+	x	+	2	(bottom),	with	extrema	marked

What	if	we	can’t	easily	find	the	stationary	points	of	a	function?	Perhaps	we
can’t	solve	the	function	algebraically,	or	maybe	it	can’t	be	expressed	in	closed
form,	meaning	no	finite	set	of	operations	represents	it.	A	typical	calculus	course



isn’t	interested	in	these	situations.	Still,	we	need	to	be,	because	one	way	to	think
of	a	neural	network	is	as	a	function	approximator,	one	whose	function	can’t	be
expressed	directly.	Can	we	still	profitably	use	our	new	knowledge	of
derivatives?	The	answer	is	yes,	we	can.	We	can	use	the	derivative	as	a	pointer	to
tell	us	how	to	move	closer	and	closer	to	the	extrema.	This	is	what	gradient
descent	does,	and	we’ll	spend	quite	a	bit	of	time	discussing	it	later	in	the	book.

For	now,	however,	let’s	move	on	and	examine	functions	of	more	than	one
variable	and	see	what	this	does	to	the	idea	of	a	derivative.

Partial	Derivatives
So	far,	we’ve	focused	exclusively	on	functions	of	one	variable,	x.	What	happens
to	the	notion	of	differentiation	when	we	have	functions	of	more	than	one
variable,	say,	f(x,	y),	or	f(x0,	x1,	x2,	.	.	.	,	xn)?	To	handle	these	cases,	we’ll
introduce	the	idea	of	a	partial	derivative.	Note	that,	for	clarity,	we’ll	use
Leibniz’s	notation	in	this	section.

Equation	7.2	defined	the	derivative	of	f(x)	with	respect	to	x.	If	x	is	the	only
variable,	why	did	we	add	the	extra	phrase	“with	respect	to	x”?	Now	we’ll	find
out	why:	the	partial	derivative	with	respect	to	one	of	the	variables	in	the
expression	is	found	by	holding	all	the	other	variables	fixed.	We	treat	them	as	if
they	were	constants.	Then	we	say	we’re	calculating	the	partial	derivative	with
respect	to	the	one	not	held	fixed.

Let’s	look	at	an	example.	Let	f(x,	y)	=	xy	+	x/y.	Then,	we	can	calculate	two
partial	derivatives,	one	with	respect	to	x	and	the	other	with	respect	to	y:

The	rules	of	differentiation	we	learned	earlier	in	the	chapter	still	apply.	Notice
the	d	has	changed	to	∂.	This	indicates	that	the	function,	f,	is	of	more	than	one
variable.	Also,	see	that	when	calculating	the	respective	derivatives,	we	held	the
other	variable	fixed	as	if	it	were	a	parameter.	As	far	as	calculating	partial
derivatives,	that’s	all	there	is	to	it.	Let’s	see	a	few	more	examples	to	help	you
make	the	idea	more	concrete.



If	f(x,	y,	z)	=	x2	+	y2	+	z2	+	3xyz,	we	can	find	three	partial	derivatives:

The	other	two	variables	are	considered	constant.	This	is	why,	for	example,	in	the
partial	derivative	with	respect	to	x,	y2	and	z2	become	0,	and	3xyz	becomes	3yz.

If	 ,	we	have	four	partial	derivatives:

As	a	more	complex	example,	consider	f(x,	y)	=	exy	cos	x	sin	y.	The	partial



derivatives	are	listed	next	where	we	use	the	product	rule	in	each	case.

Mixed	Partial	Derivatives
Just	as	with	the	derivative	of	a	function	of	a	single	variable,	we	can	take	partial
derivatives	of	a	partial	derivative.	These	are	known	as	mixed	partials.
Additionally,	we	have	more	flexibility	because	we	can	change	which	variable	we
take	the	next	partial	derivative	with	respect	to.	For	example,	above,	we	saw	that
the	partial	derivative	of	 	with	respect	to	z	is

which	is	still	a	function	of	x,	y,	z,	and	t.	Therefore,	we	can	calculate	second
partial	derivatives	like	so:



I’ll	explain	the	notation.	We	started	with	the	partial	derivative	of	f	with
respect	to	z,	so	we	write	∂f/∂z.	Then,	from	this	starting	point,	we	are	taking	other
partial	derivatives.	So,	if	we	want	to	denote	the	partial	with	respect	to	x,	we	think
of	it	this	way:

where	we	can	think	of	the	partial	derivative	operator	“multiplying”	the
“numerator”	and	“denominator”	like	a	fraction.	To	be	clear,	however,	these	are
not	fractions;	the	notation	has	just	inherited	the	flavor	of	a	fraction	from	its	slope
origins.	Still,	if	the	mnemonic	is	helpful,	then	it’s	helpful.	For	a	second	partial
derivative,	the	variable	it’s	taken	with	respect	to	is	on	the	left.	Also,	if	the
variables	are	the	same,	an	exponent	(of	sorts)	is	used,	as	in	∂2f/∂z2.

The	Chain	Rule	for	Partial	Derivatives
To	apply	the	chain	rule	to	partial	derivatives,	we	need	to	track	all	the	variables.
So,	if	we	have	f(x,	y),	where	both	x	and	y	are	functions	of	other	variables,	x(r,	s)



and	y(r,	s),	then	we	can	find	the	partials	of	f	with	respect	to	r	and	s	by	applying
the	chain	rule	for	each	variable,	x	and	y.	Specifically,

As	an	example,	let	f(x,	y)	=	x3+y3	with	x(r,	s)	=	3r+2s	and	y(r,	s)	=	r2−3s.
Now	find	∂f/∂r	and	∂f/∂s.	To	find	these	partials,	we’ll	need	to	calculate	six
expressions,

so	that	the	desired	partials	are



Just	as	with	a	function	of	a	single	variable,	the	chain	rule	for	functions	of
more	than	one	variable	is	recursive,	such	that	if	r	and	s	were	themselves
functions	of	another	variable,	we	could	apply	the	chain	rule	one	more	time	to
find	the	partial	of	f	with	respect	to	that	variable.	For	example,	if	we	have	x(r,	s),
y(r,	s),	with	r(w),	s(w),	we	find	∂f/∂w	by	using

In	the	end,	we	need	to	remember	that	∂f/∂w	tells	us	how	f	will	change	for	a
small	change	in	w.	We’ll	use	this	fact	during	gradient	descent.

This	section	concerned	itself	with	the	mechanical	calculation	of	partial
derivatives.	Let’s	move	on	to	explore	more	of	the	meaning	behind	these



derivatives.	Let’s	move	on	to	explore	more	of	the	meaning	behind	these
quantities.	This	will	lead	us	to	the	idea	of	a	gradient.

Gradients
In	Chapter	8,	we	will	dive	into	the	matrix	calculus	representation	we	use	in	deep
learning.	However,	before	we	do	that,	we	will	conclude	this	chapter	by
introducing	the	idea	of	a	gradient.	The	gradient	builds	on	the	derivatives	we’ve
been	calculating.	In	short,	the	gradient	tells	us	how	a	function	of	more	than	one
variable	is	changing	and	the	direction	in	which	it	is	changing	the	most.

Calculating	the	Gradient
If	we	have	f(x,	y,	z),	we	saw	above	how	to	calculate	partial	derivatives	with
respect	to	each	of	the	variables.	If	we	interpret	the	variables	as	positions	on
coordinate	axes,	we	see	that	f	is	a	function	that	returns	a	scalar,	a	single	number,
for	any	position	in	3D	space,	(x,	y,	z).	We	could	even	go	so	far	as	to	write	f(x)
where	x	=	(x,	y,	z)	to	acknowledge	that	f	is	a	function	of	a	vector	input.	As	in
previous	chapters,	we’ll	use	lowercase	bold	letters	to	represent	vectors,	x.	Note,
some	people	use	 	to	represent	vectors.

We	can	write	vectors	horizontally,	as	a	row	vector,	like	in	the	previous
paragraph,	or	vertically,

as	a	column	vector,	where	we’ve	also	used	square	brackets	instead	of
parentheses.	Either	notation	is	acceptable.	Unless	we’re	intentionally	sloppy,
usually	when	we’re	discussing	a	vector	in	code,	we’ll	assume	that	our	vectors
are	column	vectors.	This	means	a	vector	is	a	matrix	with	n	rows	and	one	column,
n	×	1.

A	function	that	accepts	a	vector	input	and	returns	a	single	number	as	output
is	known	as	a	scalar	field.	The	canonical	example	of	a	scalar	field	is
temperature.	We	can	measure	the	temperature	at	any	point	in	a	room.	We
represent	the	location	as	a	3D	vector	relative	to	some	chosen	origin	point,	and
the	temperature	is	the	value	at	that	point,	the	average	kinetic	energy	of	the
molecules	in	that	region.	We	can	also	talk	about	functions	that	accept	vectors	as
input	and	return	a	vector	as	output.	These	are	known	as	vector	fields.	In	both
cases,	the	field	part	refers	to	the	fact	that,	over	some	suitable	domain,	the



function	has	a	value	for	all	inputs.
The	gradient	is	the	derivative	of	a	function	that	accepts	a	vector	as	input.

Mathematically,	we	represent	the	gradient	as	a	generalization	of	the	idea	of
partial	derivatives	to	n	dimensions.	For	example,	in	3D	space,	we	can	write

where	the	gradient	operator,	▽,	takes	the	partial	derivative	of	f	along	each	of	its
dimensions.	The	▽	operator	goes	by	multiple	names,	like	del,	grad,	or	nabla.
We’ll	use	▽	and	call	it	del	when	we’re	not	simply	saying	“gradient	operator.”

In	general,	we	can	write

Let’s	parse	Equation	7.7.	First,	we	have	a	function,	f,	that	accepts	a	vector
input,	x,	and	returns	a	scalar	value.	To	this	function,	we	apply	the	gradient
operator:



This	returns	a	vector	(y).	The	gradient	operator	turns	the	scalar	output	of	f	into	a
vector.	Let’s	spend	some	time	thinking	about	what	this	means,	what	it’s	telling
us	about	the	value	of	the	scalar	field	at	a	given	position	in	space.	(We’ll	use
space	when	working	with	vectors,	even	if	there’s	no	meaningful	way	to	visualize
the	space.	An	analogy	to	3D	space	is	helpful	but	only	goes	so	far;
mathematically,	the	idea	of	space	is	more	general.)

As	an	example,	consider	a	function	in	2D	space,	f(x)	=	f(x,	y)	=	x2	+	xy	+	y2.
The	gradient	of	f	is	then

Since	f	is	a	scalar	field,	every	point	on	the	2D	plane	has	a	function	value.
This	is	the	output	of	f(x)	=	f(x,	y).	So,	we	can	plot	f	in	3D	to	show	us	a	surface
changing	with	position.	The	gradient,	however,	gives	us	a	set	of	equations.
These	equations	collectively	tell	us	the	direction	and	magnitude	of	the	change	in
the	function	value	at	a	point,	x	=	(x,	y).

For	a	function	of	a	single	variable,	there’s	only	one	slope	at	each	point.	Look
again	at	the	tangent	line	of	Figure	7-1.	At	the	point	xt,	there’s	only	one	slope.
The	sign	of	the	derivative	at	xt	gives	the	direction	of	the	slope,	and	the	absolute
value	of	the	derivative	gives	the	magnitude	(steepness)	of	the	slope.

However,	once	we	change	to	more	than	one	dimension,	we	have	a	bit	of	a
conundrum.	Instead	of	only	one	slope	tangent	to	the	function,	we	now	have	an
infinite	number.	We	can	imagine	a	line	tangent	to	the	function	at	some	point	and



that	the	line	points	in	any	direction	we	so	desire.	The	slope	of	the	line	tells	us
how	the	function	value	is	changing	in	that	particular	direction.	We	can	find	the
value	of	this	change	from	the	directional	derivative,	the	dot	product	between	the
gradient	at	the	point	under	consideration	and	a	unit	vector	in	the	direction	we’re
interested	in:

Duf(x)	≡	u•	▽f(x)	=	uT▽f(x)	=	||u||||▽f(x)||	cos	θ

where	u	is	a	unit	vector	in	a	particular	direction,	▽f(x)	is	the	gradient	of	the
function	at	the	point	x,	and	θ	is	the	angle	between	them.	The	directional
derivative	is	maximized	when	cos	θ	is	maximized,	and	this	happens	at	θ	=	0.
Therefore,	the	direction	of	the	maximum	change	in	a	function	at	any	point	is	the
gradient	at	that	point.

As	an	example,	let’s	pick	a	point	on	the	2D	plane,	say	x	=	(x,	y)	=	(0.5,	−0.4)
with	f(x,	y)	=	x2	+	xy	+	y2	from	above.	Then,	the	function	value	at	x	is	x2	+	xy	+
y2	=	(0.5)2	+	(0.5)(−0.4)	+	(−0.4)2	=	0.21,	a	scalar.	However,	the	gradient	at	this
point	is

Therefore,	we	now	know	that	at	the	point	(0.5,	−0.4),	the	direction	of	the
largest	change	in	f	is	in	the	direction	(0.6,	−0.3)	and	has	a	magnitude	of	

.

Visualizing	the	Gradient
Let’s	make	all	of	this	less	abstract.	The	top	part	of	Figure	7-4	shows	a	plot	of	f(x,
y)	=	x2	+	xy	+	y2	at	selected	points.





Figure	7-4:	A	plot	of	x2	+	xy	+	y2	(top)	and	a	2D	projection	of	the	associated	gradient	field	(bottom)

The	code	to	generate	this	plot	is	straightforward:

import	numpy	as	np
x	=	np.linspace(-1.0,1.0,50)
y	=	np.linspace(-1.0,1.0,50)
xx	=	[];	yy	=	[];	zz	=	[]
for	i	in	range	(50):
				for	j	in	range	(50):
								xx.append(x[i])
								yy.append(y[j])
								zz.append(x[i]*x[i]+x[i]*y[j]+y[j]*y[j])
x	=	np.array(xx)
y	=	np.array(yy)
z	=	np.array(zz)

Here,	we	explicitly	loop	to	generate	the	set	of	scatter	plot	points,	x,	y,	and	z,
to	clearly	show	what’s	happening.	First,	we	use	NumPy	to	generate	vectors	of	50
evenly	spaced	points	[−1,	1]	in	x	and	y.	Then	we	set	up	a	double	loop	so	that
each	x	gets	paired	with	each	y	to	calculate	the	function	value,	z.	Temporary	lists
xx,	yy,	and	zz	hold	the	triplets.	Finally,	we	convert	the	lists	to	NumPy	arrays	for
plotting.

The	code	to	generate	the	scatter	plot	is

from	mpl_toolkits.mplot3d	import	Axes3D
import	matplotlib.pylab	as	plt
fig	=	plt.figure()
ax	=	fig.add_subplot(111,	projection='3d')
ax.scatter(x,	y,	z,	marker='.',	s=2,	color='b')
ax.view_init(30,20)
plt.draw()
plt.show()

We	first	load	the	matplotlib	extension	for	3D	plotting,	and	then	we	set	the	subplot
for	a	3D	projection.	The	plot	itself	is	made	with	ax.scatter,	while	ax.view_init	and
plt.draw	rotate	the	plot	to	give	us	a	better	view	of	the	shape	of	the	function	before
showing	it.

In	the	bottom	part	of	Figure	7-4,	we	see	a	vector	plot	of	the	gradient	field	for
x2	+	xy	+	y2.	This	plot	shows	the	direction	and	relative	magnitude	of	the	gradient
vector	at	a	grid	of	points,	(x,	y).	Recall,	the	gradient	is	a	vector	field,	so	each
point	on	the	xy-plane	has	an	associated	vector	pointing	in	the	direction	of	the
greatest	change	in	the	function	value.	Mentally,	we	can	see	how	the	vector	plot



relates	to	the	function	plot	in	the	top	part	of	Figure	7-4,	where	function	values
near	(−1,	−1)	and	(1,	1)	are	changing	quickly,	whereas	for	points	near	(0,	0)
they’re	changing	slowly.

The	code	to	generate	the	vector	field	plot	is

fig	=	plt.figure()
ax	=	fig.add_subplot(111)
x	=	np.linspace(-1.0,1.0,20)
y	=	np.linspace(-1.0,1.0,20)
xv,	yv	=	np.meshgrid(x,	y,	indexing='ij',	sparse=False)
dx	=	2*xv	+	yv
dy	=	2*yv	+	xv
ax.quiver(xv,	yv,	dx,	dy,	color='b')
plt.axis('equal')
plt.show()

We	first	define	the	figure	(fig)	and	subplot	for	2D	(no	projection	keyword).
Then,	we	need	a	grid	of	points.	Above,	we	looped	to	get	this	grid	so	we	could
understand	what	needed	to	be	generated.	Here,	we	use	NumPy	to	generate	the
grid	for	us	via	np.meshgrid.	Note,	we	pass	np.meshgrid	the	same	x	and	y	vectors	we
had	above	to	define	the	domain.

The	next	two	lines	are	a	direct	implementation	of	the	gradient	of	f,	Equation
7.8.	These	are	the	vectors	we	want	to	plot,	with	dx	and	dy	giving	us	the	direction
and	magnitude,	while	xv	and	yv	are	the	set	of	input	points—400	total.

The	plot	uses	ax.quiver	(since	it	plots	arrows).	The	arguments	are	the	grid	of
points	(xv,	yv)	and	associated	x	and	y	values	of	the	vectors	at	those	points	(dx,	dy).
Finally,	we	ensure	the	axes	are	equal	(plt.axis)	to	avoid	warping	the	vector	display,
then	show	the	plot.

We’ll	conclude	our	introduction	of	gradients	here.	We’ll	see	them	again
throughout	the	remainder	of	the	book,	in	the	notation	in	Chapter	8	and	the
gradient	descent	discussions	of	Chapter	11.

Summary
This	chapter	introduced	the	main	concepts	of	differential	calculus.	We	started
with	the	notion	of	slope	and	learned	the	difference	between	secant	and	tangent
lines	for	a	function	of	a	single	variable.	We	then	formally	defined	the	derivative
as	the	slope	of	a	secant	line	as	it	approaches	a	single	point.	From	there,	we
learned	the	basic	rules	of	differentiation	and	saw	how	to	apply	them.

Next,	we	learned	about	the	minima	and	maxima	of	a	function	and	how	to
find	these	points	using	derivatives.	We	then	introduced	partial	derivatives	as	a



find	these	points	using	derivatives.	We	then	introduced	partial	derivatives	as	a
way	to	calculate	derivatives	for	functions	of	more	than	one	variable.	Partial
derivatives	then	led	us	to	the	gradient,	which	turns	a	scalar	field	into	a	vector
field	and	tells	us	the	direction	in	which	the	function	is	changing	the	most.	We
calculated	an	example	gradient	in	2D	and	saw	how	to	generate	plots	showing	the
relationship	between	the	function	and	the	gradient.	We	learned	the	crucial	fact
that	the	gradient	of	a	function	points	in	the	direction	of	the	maximum	change	in
the	function	value	at	a	point.

Let’s	continue	our	exploration	of	the	math	behind	deep	learning	and	move
into	the	world	of	matrix	calculus.



8
MATRIX	CALCULUS

Chapter	7	introduced	us	to	differential	calculus.	In	this	chapter,	we’ll	discuss
matrix	calculus,	which	extends	differentiation	to	functions	involving	vectors	and
matrices.

Deep	learning	works	extensively	with	vectors	and	matrices,	so	it	makes
sense	to	develop	a	notation	and	approach	to	representing	derivatives	involving
these	objects.	That’s	what	matrix	calculus	gives	us.	We	saw	a	hint	of	this	at	the
end	of	Chapter	7,	when	we	introduced	the	gradient	to	represent	the	derivative	of
a	scalar	function	of	a	vector—a	function	that	accepts	a	vector	argument	and
returns	a	scalar,	f(x).

We’ll	start	with	the	table	of	matrix	calculus	derivatives	and	their	definitions.
Next,	we’ll	examine	some	identities	involving	matrix	derivatives.
Mathematicians	love	identities;	however,	to	preserve	our	sanity,	we’ll	only
consider	a	handful.	Some	special	matrices	come	out	of	matrix	calculus,	namely
the	Jacobian	and	Hessian.	You’ll	run	into	both	of	these	matrices	during	your
sojourn	through	deep	learning,	so	we’ll	consider	them	next	in	the	context	of
optimization.	Recall	that	training	a	neural	network	is,	fundamentally,	an
optimization	problem,	so	understanding	what	these	special	matrices	represent
and	how	we	use	them	is	especially	important.	We’ll	close	the	chapter	with	some
examples	of	matrix	derivatives.

The	Formulas
Table	8-1	summarizes	the	matrix	calculus	derivatives	we’ll	explore	in	this



chapter.	These	are	the	ones	commonly	used	in	practice.

Table	8-1:	Matrix	Calculus	Derivatives

Scalar Vector Matrix
Scalar ∂f/∂x ∂f/∂x ∂F/∂x
Vector ∂f/∂x ∂f/∂x —
Matrix ∂f/∂X — —

The	columns	of	Table	8-1	represent	the	function,	meaning	the	return	value.
Notice	we	use	three	versions	of	the	letter	f:	regular,	bold,	and	capital.	We	use	f	if
the	return	value	is	a	scalar,	f	if	a	vector,	and	F	if	a	matrix.	The	rows	of	Table	8-1
are	the	variables	the	derivatives	are	calculated	with	respect	to.	The	same	notation
applies:	x	is	a	scalar,	x	is	a	vector,	and	X	is	a	matrix.

Table	8-1	defines	six	derivatives,	but	there	are	nine	cells	in	the	table.	While
possible	to	define,	the	remaining	derivatives	are	not	standardized	or	used	often
enough	to	make	covering	them	worthwhile.	That’s	good	for	us,	as	the	six	are
enough	of	a	challenge	for	our	mathematical	brains.

The	first	derivative	in	Table	8-1,	the	one	in	the	upper	left,	is	the	normal
derivative	of	Chapter	7,	a	function	producing	a	scalar	with	respect	to	a	scalar.
(Refer	to	Chapter	7	for	everything	you	need	to	know	about	standard
differentiation.)

We’ll	cover	the	remaining	five	derivatives	in	the	sections	below.	We	define
each	one	in	terms	of	scalar	derivatives.	We’ll	first	show	the	definition	and	then
explain	what	the	notation	represents.	The	definition	will	help	you	build	a	model
in	your	head	of	what	the	derivative	is.	I	suspect	that	by	the	end	of	this	section
you’ll	be	predicting	the	definitions	in	advance.

Before	we	start,	however,	there	is	a	complication	we	should	discuss.	Matrix
calculus	is	notation	heavy,	but	there’s	no	universal	agreement	on	the	notation.
We’ve	seen	this	before	with	the	many	ways	to	indicate	differentiation.	For
matrix	calculus,	the	two	approaches	are	numerator	layout	or	denominator	layout.
Specific	disciplines	seem	to	favor	one	over	the	other,	though	exceptions	are
almost	the	norm,	as	is	mixing	notations.	For	deep	learning,	a	nonscientific
perusal	on	my	part	seems	to	indicate	a	slight	preference	for	numerator	layout,	so
that’s	what	we’ll	use	here.	Just	be	aware	that	there	are	two	forms	out	there.	One
is	typically	the	transpose	of	the	other.

A	Vector	Function	by	a	Scalar	Argument



A	vector	function	accepting	a	scalar	argument	is	our	first	derivative;	see	Table	8-
1,	second	column	of	the	first	row.	We	write	such	a	function	as	f(x)	to	indicate	a
scalar	argument,	x,	and	a	vector	output,	f.	Functions	like	f	take	a	scalar	and	map
it	to	a	multidimensional	vector:

f	:	ℝ	→	ℝm

Here,	m	is	the	number	of	elements	in	the	output	vector.	Functions	like	f	are
known	as	vector-valued	functions	with	scalar	arguments.

A	parametric	curve	in	3D	space	is	an	excellent	example	of	such	a	function.
Those	functions	are	often	written	as

where	 ,	 ,	and	 	are	unit	vectors	in	the	x,	y,	and	z	directions.
Figure	8-1	shows	a	plot	of	a	3D	parametric	curve,

where,	as	t	varies,	the	three	axis	values	also	vary	to	trace	out	the	spiral.	Here,
each	value	of	t	specifies	a	single	point	in	3D	space.



Figure	8-1:	A	3D	parametric	curve

In	matrix	calculus	notation,	we	don’t	write	f	as	shown	in	Equation	8.1.
Instead,	we	write	f	as	a	column	vector	of	the	functions,

and,	in	general,

for	f	with	n	elements.
The	derivative	of	f(x)	is	known	as	the	tangent	vector.	What	does	the

derivative	look	like?	Since	f	is	a	vector,	we	might	expect	the	derivative	of	f	to	be



the	derivatives	of	the	functions	representing	each	element	of	f,	and	we’d	be
right:

Let’s	look	at	a	simple	example.	First,	we	will	define	f(x),	and	then	the
derivative:

Here,	each	element	of	∂f/∂x	is	the	derivative	of	the	corresponding	function	in	f.

A	Scalar	Function	by	a	Vector	Argument
In	Chapter	7,	we	learned	that	a	function	accepting	a	vector	input	but	returning	a
scalar	is	a	scalar	field:

f	:	ℝm	→	ℝ

We	also	learned	that	the	derivative	of	this	function	is	the	gradient.	In	matrix
calculus	notation,	we	write	∂f/∂x	for	f(x)	as

where	x	=	[x0	x1	...	xm–1]⊤	is	a	vector	of	variables,	and	f	is	a	function	of	those
variables.

Notice,	because	we	decided	to	use	the	numerator	layout	approach,	∂f/∂x	is
written	as	a	row	vector.	So,	to	be	true	to	our	notation,	we	have	to	write

turning	the	row	vector	into	a	column	vector	to	match	the	gradient.	Remember
that	▽	is	the	symbol	for	gradient;	we	saw	an	example	of	the	gradient	in	Chapter
7.

A	Vector	Function	by	a	Vector



A	Vector	Function	by	a	Vector
If	the	derivative	of	a	vector-valued	function	by	a	scalar	produces	a	column
vector,	and	the	derivative	of	a	scalar	function	by	a	vector	results	in	a	row	vector,
does	the	derivative	of	a	vector-valued	function	by	a	vector	produce	a	matrix?
The	answer	is	yes.	In	this	case,	we’re	contemplating	∂f/∂x	for	f(x),	a	function
that	accepts	a	vector	input	and	returns	a	vector.

The	numerator	layout	convention	gave	us	a	column	vector	for	the	derivative
of	f(x),	implying	we	need	a	row	for	each	of	the	functions	in	f.	Similarly,	the
derivative	of	f(x)	produced	a	row	vector.	Therefore,	merging	the	two	gives	us	the
derivative	of	f(x):

This	is	for	a	function,	f,	returning	an	n-element	vector	and	accepting	an	m-
element	vector,	x,	as	its	argument:

f	:	ℝm	→	ℝn

Each	row	of	f	is	a	scalar	function	of	x,	for	example,	f0(x).	Therefore,	we	can
write	Equation	8.2	as

This	gives	us	the	matrix	as	a	collection	of	gradients,	one	for	each	scalar	function
in	f.	We’ll	return	to	this	matrix	later	in	the	chapter.

A	Matrix	Function	by	a	Scalar
If	f(x)	is	a	function	accepting	a	scalar	argument	but	returning	a	vector,	then	we’d
be	correct	in	assuming	F(x)	can	be	thought	of	as	a	function	accepting	a	scalar
argument	but	returning	a	matrix:



F	:	ℝ	→	ℝn×m

For	example,	assume	F	is	an	n	×	m	matrix	of	scalar	functions:

The	derivative	with	respect	to	the	argument,	x,	is	straightforward:

As	we	saw	above,	the	derivative	of	a	vector-valued	function	by	a	scalar	is
called	the	tangent	vector.	By	analogy,	then,	the	derivative	of	a	matrix-valued
function	by	a	scalar	is	the	tangent	matrix.

A	Scalar	Function	by	a	Matrix
Now	let’s	consider	f(X),	a	function	accepting	a	matrix	and	returning	a	scalar:

f	:	ℝn×m	→	ℝ

We’d	be	correct	in	thinking	that	the	derivative	of	f	with	respect	to	the	matrix,
X,	is	itself	a	matrix.	However,	to	be	true	to	our	numerator	layout	convention,	the
resulting	matrix	is	not	arranged	like	X,	but	instead	like	X⊤,	the	transpose	of	X.

Why	use	the	transpose	of	X	instead	of	X	itself?	To	answer	the	question,	we
need	to	look	back	to	how	we	defined	∂f/∂x.	There,	even	though	x	is	a	column
vector,	according	to	standard	convention,	we	said	the	derivative	is	a	row	vector.
We	used	x⊤	as	the	ordering.	Therefore,	to	be	consistent,	we	need	to	arrange	∂f/
∂X	by	the	transpose	of	X	and	change	the	columns	of	X	into	rows	in	the
derivative.	As	a	result,	we	have	the	following	definition.



This	is	an	m	×	n	output	matrix	for	the	n	×	m	input	matrix,	X.
Equation	8.4	defines	the	gradient	matrix,	which,	for	matrices,	plays	a	role

similar	to	that	of	the	gradient,	▽f(x).	Equation	8.4	also	completes	our	collection
of	matrix	calculus	derivatives.	Let’s	move	on	to	consider	some	matrix	derivative
identities.

The	Identities
Matrix	calculus	involves	scalars,	vectors,	matrices,	and	functions	thereof,	which
themselves	return	scalars,	vectors,	or	matrices,	implying	many	identities	and
relationships	exist.	However,	here	we’ll	concentrate	on	basic	identities	showing
the	relationship	between	matrix	calculus	and	the	differential	calculus	of	Chapter
7.

Each	of	the	following	subsections	presents	identities	related	to	the	specific
type	of	derivative	indicated.	The	identities	cover	fundamental	relationships	and,
when	applicable,	the	chain	rule.	In	all	cases,	the	results	follow	the	numerator
layout	scheme	we’ve	used	throughout	the	chapter.

A	Scalar	Function	by	a	Vector
We	begin	with	identities	related	to	a	scalar	function	with	a	vector	input.	If	not
otherwise	specified,	f	and	g	are	functions	of	a	vector,	x,	and	return	a	scalar.	A
constant	vector	that	doesn’t	depend	on	x	is	given	as	a,	and	a	denotes	a	scalar
constant.

The	basic	rules	are	intuitive:

and



These	show	that	multiplication	by	a	scalar	constant	acts	as	it	did	in	Chapter	7,	as
does	the	linearity	of	the	partial	derivative.

The	product	rule	also	works	as	we	expect:

Let’s	pause	here	and	remind	ourselves	of	the	inputs	and	outputs	for	the
equations	above.	We	know	that	the	derivative	of	a	scalar	function	by	a	vector
argument	is	a	row	vector	in	our	notation.	So,	Equation	8.5	returns	a	row	vector
multiplied	by	a	scalar—each	element	of	the	derivative	is	multiplied	by	a.

As	differentiation	is	a	linear	operator,	it	distributes	over	addition,	so
Equation	8.6	delivers	two	terms,	each	a	row	vector	generated	by	the	respective
derivative.

For	Equation	8.7,	the	product	rule,	the	result	again	includes	two	terms.	In
each	case,	the	derivative	returns	a	row	vector,	which	is	multiplied	by	a	scalar
function	value,	either	f(x)	or	g(x).	Therefore,	the	output	of	Equation	8.7	is	also	a
row	vector.

The	scalar-by-vector	chain	rule	becomes

where	f(g)	returns	a	scalar	and	accepts	a	scalar	argument,	while	g(x)	returns	a
scalar	and	accepts	a	vector	argument.	The	end	result	is	a	row	vector.	Let’s	work
through	a	complete	example	to	demonstrate.

We	have	a	vector,	x	=	[x0,	x1,	x2]⊤;	a	function	of	that	vector	written	in
component	form,	g(x)	=	x0	+	x1x2;	and	a	function	of	g,	f(g)	=	g2.	According	to
Equation	8.8,	the	derivative	of	f	with	respect	to	x	is



To	check	our	result,	we	can	work	through	from	g(x)	=	x0	+	x1x2	and	f(g)	=	g2

to	find	f(x)	directly	via	substitution.	Doing	this	gives	us

from	which	we	get

which	matches	the	result	we	found	using	the	chain	rule.	Of	course,	in	this	simple
example,	it	was	easier	to	work	through	the	substitution	before	taking	the
derivative,	but	we	proved	our	case	all	the	same.

We’re	not	entirely	through	with	scalar-by-vector	identities,	however.	The	dot
product	takes	two	vectors	and	produces	a	scalar,	so	it	fits	with	the	functional
form	we’re	working	with,	even	though	the	arguments	to	the	dot	product	are
vectors.

For	example,	consider	this	result:



Here,	we	have	the	derivative	of	the	dot	product	between	x	and	a	vector	a	that
does	not	depend	on	x.

We	can	expand	on	Equation	8.9,	replacing	x	with	a	vector-valued	function,
f(x):

What’s	the	form	of	this	result?	Assume	f	accepts	an	m-element	input	and
returns	an	n-element	vector	output.	Likewise,	assume	a	to	be	an	n-element
vector.	From	Equation	8.2,	we	know	the	derivative	∂f/∂x	to	be	an	n	×	m	matrix.
Therefore,	the	final	result	is	a	(1	×	n)	×	(n	×	m)	→	1	×	m	row	vector.	Good!	We
know	the	derivative	of	a	scalar	function	by	a	vector	should	be	a	row	vector	when
using	the	numerator	layout	convention.

Finally,	the	derivative	of	the	dot	product	of	two	vector-valued	functions,	f
and	g,	is

If	Equation	8.10	is	a	row	vector,	then	the	sum	of	two	terms	like	it	is	also	a	row
vector.

A	Vector	Function	by	a	Scalar
Vector-by-scalar	differentiation,	Table	8-1,	first	row,	second	column,	is	less
common	in	machine	learning,	so	we’ll	only	examine	a	few	identities.	The	first
are	multiplications	by	constants:

Note,	we	can	multiply	on	the	left	by	a	matrix,	as	the	derivative	is	a	column
vector.

The	sum	rule	still	applies,



as	does	the	chain	rule,

Equation	8.12	is	correct,	since	the	derivative	of	a	vector	by	a	scalar	is	a
column	vector,	and	the	derivative	of	a	vector	by	a	vector	is	a	matrix.	Therefore,
multiplying	the	matrix	on	the	right	by	a	column	vector	returns	a	column	vector,
as	expected.

Two	other	derivatives	involving	dot	products	with	respect	to	a	scalar	are
worth	knowing	about.	The	first	is	similar	to	Equation	8.11	but	with	two	vector-
valued	functions	of	a	scalar:

The	second	derivative	concerns	the	composition	of	f(g)	and	g(x)	with	respect
to	x:

which	is	the	dot	product	of	a	row	vector	and	a	column	vector.

A	Vector	Function	by	a	Vector
The	derivatives	of	vector-valued	functions	with	vector	arguments	are	common	in
physics	and	engineering.	In	machine	learning,	they	show	up	during
backpropagation,	for	example,	at	the	derivative	of	the	loss	function.	Let’s	begin
with	some	straightforward	identities:



and

where	the	result	is	the	sum	of	two	matrices.
The	chain	rule	is	next	and	works	as	it	did	above	for	scalar-by-vector	and

vector-by-scalar	derivatives:

with	the	result	being	the	product	of	two	matrices.

A	Scalar	Function	by	a	Matrix
For	functions	of	a	matrix,	X,	returning	a	scalar,	we	have	the	usual	form	for	the
sum	rule:

with	the	result	being	the	sum	of	two	matrices.	Recall,	if	X	is	an	n	×	m	matrix,	the
derivative	in	numerator	layout	notation	is	an	m	×	n	matrix.

The	product	rule	also	works	as	expected:

However,	the	chain	rule	is	different.	It	depends	on	f(g),	a	scalar	function
accepting	a	scalar	input,	and	g(X),	a	scalar	function	accepting	a	matrix	input.
With	this	restriction,	the	form	of	the	chain	rule	looks	familiar:



Let’s	see	Equation	8.13	in	action.	First,	we	need	X,	a	2	×	2	matrix:

Next,	we	need	 	and	g(X)	=	x0x3	+	x1x2.	Notice,	while	g(X)
accepts	a	matrix	input,	the	result	is	a	scalar	calculated	from	the	values	of	the
matrix.

To	apply	the	chain	rule,	we	need	two	derivatives,

where	we	are	again	using	numerator	layout	for	the	result.
To	find	the	overall	result,	we	calculate

To	check,	we	combine	the	functions	to	write	a	single	function,	
,	and	calculate	the	derivative	using	the	standard	chain

rule	for	each	element	of	the	resulting	matrix.	This	gives	us



matching	the	previous	result.
We	have	our	definitions	and	identities.	Let’s	revisit	the	derivative	of	a

vector-valued	function	with	a	vector	argument,	as	the	resulting	matrix	is	special.
We’ll	encounter	it	frequently	in	deep	learning.

Jacobians	and	Hessians
Equation	8.2	defined	the	derivative	of	a	vector-valued	function,	f,	with	respect	to
a	vector,	x:

This	derivative	is	known	as	the	Jacobian	matrix,	J,	or	simply	the	Jacobian,
and	you’ll	encounter	it	from	time	to	time	in	the	deep	learning	literature,
especially	during	discussions	of	gradient	descent	and	other	optimization
algorithms	used	in	training	models.	The	Jacobian	sometimes	has	a	subscript	to
indicate	the	variable	it	is	with	respect	to;	for	example,	Jx	if	with	respect	to	x.
When	the	context	is	clear,	we’ll	often	neglect	the	subscript.

In	this	section,	we’ll	discuss	the	Jacobian	and	what	it	means.	Then	we’ll
introduce	another	matrix,	the	Hessian	matrix	(or	just	the	Hessian),	which	is
based	on	the	Jacobian,	and	learn	how	to	use	it	in	optimization	problems.

The	essence	of	this	section	is	the	following:	the	Jacobian	is	the
generalization	of	the	first	derivative,	and	the	Hessian	is	the	generalization	of	the
second	derivative.

Concerning	Jacobians
We	saw	previously	that	we	can	think	of	Equation	8.14	as	a	stack	of	transposed
gradient	vectors	(Equation	8.3):



Viewing	the	Jacobian	as	a	stack	of	gradients	gives	us	a	clue	as	to	what	it
represents.	Recall,	the	gradient	of	a	scalar	field,	a	function	accepting	a	vector
argument	and	returning	a	scalar,	points	in	the	direction	of	the	maximum	change
in	the	function.	Similarly,	the	Jacobian	gives	us	information	about	how	the
vector-valued	function	behaves	in	the	vicinity	of	some	point,	xp.	The	Jacobian	is
to	vector-valued	functions	of	vectors	what	the	gradient	is	to	scalar-valued
functions	of	vectors;	it	tells	us	about	how	the	function	changes	for	a	small
change	in	the	position	of	xp.

One	way	to	think	of	the	Jacobian	is	as	a	generalization	of	the	more	specific
cases	we	encountered	in	Chapter	7.	Table	8-2	shows	the	relationship	between	the
function	and	what	its	derivative	measures.

Table	8-2:	The	Relationship	Between	Jacobians,	Gradients,	and	Slopes

Function Derivative
f(x) ∂f/∂x,	Jacobian	matrix
f(x) ∂f/∂x,	gradient	vector
f(x) df/dx,	slope

The	Jacobian	matrix	is	the	most	general	of	the	three.	If	we	limit	the	function
to	a	scalar,	then	the	Jacobian	matrix	becomes	the	gradient	vector	(row	vector	in
numerator	layout).	If	we	limit	the	function	and	argument	to	scalars,	the	gradient
becomes	the	slope.	In	a	sense,	they	all	indicate	the	same	thing:	how	the	function
is	changing	around	a	point	in	space.

The	Jacobian	has	many	uses.	I’ll	present	two	examples.	The	first	is	from
systems	of	differential	equations.	The	second	uses	Newton’s	method	to	find	the
roots	of	a	vector-valued	function.	We’ll	see	Jacobians	again	when	we	discuss
backpropagation,	as	that	requires	calculating	derivatives	of	a	vector-valued
function	with	respect	to	a	vector.

Autonomous	Differential	Equations
A	differential	equation	combines	derivatives	and	function	values	in	one
equation.	Differential	equations	show	up	everywhere	in	physics	and	engineering.



Our	example	comes	from	the	theory	of	autonomous	systems,	which	are
differential	equations	where	the	independent	variable	does	not	appear	on	the
right-hand	side.	For	instance,	if	the	system	consists	of	values	of	the	function	and
first	derivatives	with	respect	to	time,	t,	there	is	no	t	explicit	in	the	equations
governing	the	system.

The	previous	paragraph	is	just	for	background;	you	don’t	need	to	memorize
it.	Working	with	systems	of	autonomous	differential	equations	ultimately	leads
to	the	Jacobian,	which	is	our	goal.	We	can	view	the	system	as	a	vector-valued
function,	and	we’ll	use	the	Jacobian	to	characterize	the	critical	points	of	that
system	(the	points	where	the	derivative	is	zero).	We	worked	with	critical	points
of	functions	in	Chapter	7.

For	example,	let’s	explore	the	following	system	of	equations:

This	system	includes	two	functions,	x(t)	and	y(t),	and	they	are	coupled	so
that	the	rate	of	change	of	x(t)	depends	on	the	value	of	x	and	the	value	of	y,	and
vice	versa.

We’ll	view	the	system	as	a	single,	vector-valued	function:

where	we	replace	x	with	x0	and	y	with	x1.
The	system	that	f	represents	has	critical	points	at	locations	where	f	=	0,	with

0	being	the	2	×	1	dimensional	zero	vector.	The	critical	points	are

where	substitution	into	f	shows	that	each	point	returns	the	zero	vector.	For	the
time	being,	assume	we	were	given	the	critical	points,	and	now	we	want	to
characterize	them.

To	characterize	a	critical	point,	we	will	need	the	Jacobian	matrix	that	f
generates:



Since	the	Jacobian	describes	how	a	function	behaves	in	the	vicinity	of	a
point,	we	can	use	it	to	characterize	the	critical	points.	In	Chapter	7,	we	used	the
derivative	to	tell	us	whether	a	point	was	a	minimum	or	maximum	of	a	function.
For	the	Jacobian,	we	use	the	eigenvalues	of	J	in	much	the	same	way	to	talk
about	the	type	and	stability	of	critical	points.

First,	let’s	find	the	Jacobian	at	each	of	the	critical	points:

We	can	use	NumPy	to	get	the	eigenvalues	of	the	Jacobians:

>>>	import	numpy	as	np
>>>	np.linalg.eig([[4,0],[0,2]])[0]
array([4.,	2.])
>>>	np.linalg.eig([[2,0],[1,-2]])[0]
array([-2.,	2.])
>>>	np.linalg.eig([[0,-4],[2,-4]])[0]
array([-2.+2.j,	-2.-2.j])

We	encountered	np.linalg.eig	in	Chapter	6.	The	eigenvalues	are	the	first	values	that
eig	returns,	hence	the	[0]	subscript	to	the	function	call.

For	critical	points	of	a	system	of	autonomous	differential	equations,	the
eigenvalues	indicate	the	points’	type	and	stability.	If	both	eigenvalues	are	real
and	have	the	same	sign,	the	critical	point	is	a	node.	If	the	eigenvalues	are	less
than	zero,	the	node	is	stable;	otherwise,	it	is	unstable.	You	can	think	of	a	stable
node	as	a	pit;	if	you’re	near	it,	you’ll	fall	into	it.	An	unstable	node	is	like	a	hill;	if
you	move	away	from	the	top,	the	critical	point,	you’ll	fall	off.	The	first	critical
point,	c0,	has	positive,	real	eigenvalues;	therefore,	it	represents	an	unstable	node.

If	the	eigenvalues	of	the	Jacobian	are	real	but	of	opposite	signs,	the	critical
point	is	a	saddle	point.	We	discussed	saddle	points	in	Chapter	7.	A	saddle	point
is	ultimately	unstable,	but	in	two	dimensions,	there’s	a	direction	where	you	can
“fall	into”	the	saddle	and	a	direction	where	you	can	“fall	off”	the	saddle.	Some
researchers	believe	most	minima	found	when	training	deep	neural	networks	are
really	saddle	points	of	the	loss	function.	We	see	that	critical	point	c1	is	a	saddle
point,	since	the	eigenvalues	are	real	with	opposite	signs.



Finally,	the	eigenvalues	of	c2	are	complex.	Complex	eigenvalues	indicate	a
spiral	(also	called	a	focus).	If	the	real	part	of	the	eigenvalues	is	less	than	zero,
the	spiral	is	stable;	otherwise,	it	is	unstable.	As	the	eigenvalues	are	complex
conjugates	of	each	other,	the	signs	of	the	real	parts	must	be	the	same;	one	can’t
be	positive	while	the	other	is	negative.	For	c2,	the	real	parts	are	negative,	so	c2
indicates	a	stable	spiral.

Newton’s	Method
I	presented	the	critical	points	of	Equation	8.15	by	fiat.	The	system	is	easy
enough	that	we	can	solve	for	the	critical	points	algebraically,	but	that	might	not
generally	be	the	case.	One	classic	method	for	finding	the	roots	of	a	function	(the
places	where	it	returns	zero)	is	known	as	Newton’s	method.	This	is	an	iterative
method	using	the	first	derivative	and	an	initial	guess	to	zero	in	on	the	root.	Let’s
look	at	the	method	in	one	dimension	and	then	extend	it	to	two.	We’ll	see	that
moving	to	two	or	more	dimensions	requires	the	use	of	the	Jacobian.

Let’s	use	Newton’s	method	to	find	the	square	root	of	2.	To	do	that,	we	need
an	equation	such	that	 .	A	moment’s	thought	gives	us	one:	f(x)	=	2	−
x2.	Clearly,	when	 .

The	governing	equation	for	Newton’s	method	in	one	dimension	is

where	x0	is	some	initial	guess	at	the	solution.
We	substitute	x0	for	xn	on	the	right-hand	side	of	Equation	8.18	to	find	x1.	We

then	repeat	using	x1	on	the	right-hand	side	to	get	x2,	and	so	on	until	we	see	little
change	in	xn.	At	that	point,	if	our	initial	guess	is	reasonable,	we	have	the	value
we’re	looking	for.	Newton’s	method	converges	quickly,	so	for	typical	examples,
we	only	need	a	handful	of	iterations.	Of	course,	we	have	powerful	computers	at
our	fingertips,	so	we’ll	use	them	instead	of	working	by	hand.	The	Python	code
we	need	is	in	Listing	8-1.

import	numpy	as	np
def	f(x):
				return	2.0	-	x*x
def	d(x):
				return	-2.0*x



x	=	1.0
for	i	in	range(5):
				x	=	x	-	f(x)/d(x)
				print("%2d:	%0.16f"	%	(i+1,x))
print("NumPy	says	sqrt(2)	=	%0.16f	for	a	deviation	of	%0.16f"	%
					(np.sqrt(2),	np.abs(np.sqrt(2)-x)))

Listing	8-1:	Finding	 	via	Newton’s	method

Listing	8-1	defines	two	functions.	The	first,	f(x),	returns	the	function	value	for
a	given	x.	The	second,	d(x),	returns	the	derivative	at	x.	If	f(x)	=	2	−	x2,	then	f′(x)	=
−2x.

Our	initial	guess	is	x	=	1.0.	We	iterate	Equation	8.18	five	times,	printing	the
current	estimate	of	the	square	root	of	2	each	time.	Finally,	we	use	NumPy	to
calculate	the	true	value	and	see	how	far	we	are	from	it.

Running	Listing	8-1	produces

	1:	1.5000000000000000
	2:	1.4166666666666667
	3:	1.4142156862745099
	4:	1.4142135623746899
	5:	1.4142135623730951

NumPy	says	sqrt(2)	=	1.4142135623730951	for	a
deviation	of	0.0000000000000000

which	is	impressive;	we	get	 	to	16	decimals	in	only	five	iterations.
To	extend	Newton’s	method	to	vector-valued	functions	of	vectors,	like

Equation	8.15,	we	replace	the	reciprocal	of	the	derivative	with	the	inverse	of	the
Jacobian.	Why	the	inverse?	Recall,	for	a	diagonal	matrix,	the	inverse	is	the
reciprocal	of	the	diagonal	elements.	If	we	view	the	scalar	derivative	as	a	1	×	1
matrix,	then	the	reciprocal	and	inverse	are	the	same.	Equation	8.18	is	already
using	the	inverse	of	the	Jacobian,	albeit	one	for	a	1	×	1	matrix.	Therefore,	we’ll
iterate

for	a	suitable	initial	value,	x0,	and	the	inverse	of	the	Jacobian	evaluated	at	xn.
Let’s	use	Newton’s	method	to	find	the	critical	points	of	Equation	8.15.

Before	we	can	write	some	Python	code,	we	need	the	inverse	of	the	Jacobian,
Equation	8.17.	The	inverse	of	a	2	×	2	matrix,



is

assuming	the	determinant	is	not	zero.	The	determinant	of	A	is	ad	−	bc.
Therefore,	the	inverse	of	Equation	8.17	is

Now	we	can	write	our	code.	The	result	is	Listing	8-2.

			import	numpy	as	np

			def	f(x):
							x0,x1	=	x[0,0],x[1,0]
							return	np.array([[4*x0-2*x0*x1],[2*x1+x0*x1-2*x1**2]])

			def	JI(x):
							x0,x1	=	x[0,0],x[1,0]
							d	=	(4-2*x1)*(2-x0-4*x1)+2*x0*x1
							return	(1/d)*np.array([[2-x0-4*x1,2*x0],[-x1,4-2*x0]])

			x0	=	float(input("x0:	"))
			x1	=	float(input("x1:	"))
❶	x	=	np.array([[x0],[x1]])

			N	=	20
			for	i	in	range(N):
				❷	x	=	x	-	JI(x)	@	f(x)
							if	(i	>	(N-10)):
											print("%4d:	(%0.8f,	%0.8f)"	%	(i,	x[0,0],x[1,0]))

Listing	8-2:	Newton’s	method	in	2D

Listing	8-2	echoes	Listing	8-1	for	the	1D	case.	We	have	f(x)	to	calculate	the
function	value	for	a	given	input	vector	and	JI(x)	to	give	us	the	value	of	the	inverse
Jacobian	at	x.	Notice	that	f(x)	returns	a	column	vector	and	JI(x)	returns	a	2	×	2
matrix.

The	code	first	asks	the	user	for	initial	guesses,	x0	and	x1.	These	are	formed
into	the	initial	vector,	x.	Note	that	we	explicitly	form	x	as	a	column	vector	❶.



The	implementation	of	Equation	8.19	comes	next	❷.	The	inverse	Jacobian	is
a	2	×	2	matrix	that	we	multiply	on	the	right	by	the	function	value,	a	2	×	1	column
vector,	using	NumPy’s	matrix	multiplication	operator,	@.	The	result	is	a	2	×	1
column	vector	subtracted	from	the	current	value	of	x,	itself	a	2	×	1	column
vector.	If	the	loop	is	within	10	iterations	of	completion,	the	current	value	is
printed	at	the	console.

Does	Listing	8-2	work?	Let’s	run	it	and	see	if	we	can	find	initial	guesses
leading	to	each	of	the	critical	points	(Equation	8.16).	For	an	initial	guess	of	

,	we	get

11:	(0.00004807,	-1.07511237)
12:	(0.00001107,	-0.61452262)
13:	(0.00000188,	-0.27403667)
14:	(0.00000019,	-0.07568702)
15:	(0.00000001,	-0.00755378)
16:	(0.00000000,	-0.00008442)
17:	(0.00000000,	-0.00000001)
18:	(0.00000000,	-0.00000000)
19:	(0.00000000,	-0.00000000)

which	is	the	first	critical	point	of	Equation	8.15.	To	find	the	two	remaining
critical	points,	we	need	to	pick	our	initial	guesses	with	some	care.	Some	guesses
explode,	while	many	lead	back	to	the	zero	vector.	However,	some	trial	and	error
gives	us

showing	that	Newton’s	method	can	find	the	critical	points	of	Equation	8.15.
We	started	this	section	with	a	system	of	differential	equations	that	we

interpreted	as	a	vector-valued	function.	We	then	used	the	Jacobian	to
characterize	the	critical	points	of	that	system.	Next,	we	used	the	Jacobian	a
second	time	to	locate	the	system’s	critical	points	via	Newton’s	method.	We
could	do	this	because	the	Jacobian	is	the	generalization	of	the	gradient	to	vector-
valued	functions,	and	the	gradient	itself	is	a	generalization	of	the	first	derivative
of	a	scalar	function.	As	mentioned	above,	we’ll	see	Jacobians	again	when	we
discuss	backpropagation	in	Chapter	10.

Concerning	Hessians



If	the	Jacobian	matrix	is	like	the	first	derivative	of	a	function	of	one	variable,
then	the	Hessian	matrix	is	like	the	second	derivative.	In	this	case,	we’re
restricted	to	scalar	fields,	functions	returning	a	scalar	value	for	a	vector	input.
Let’s	start	with	the	definition	and	go	from	there.	For	the	function	f(x),	the
Hessian	is	defined	as

where	x	=	[x0	x1	.	.	.	xn–1]⊤.
Looking	at	Equation	8.20	tells	us	that	the	Hessian	is	a	square	matrix.

Moreover,	it’s	a	symmetric	matrix	implying	H	=	H⊤.
The	Hessian	is	the	Jacobian	of	the	gradient	of	a	scalar	field:

Hf	=	J(▽f)

Let’s	see	this	with	an	example.	Consider	this	function:

If	we	use	the	definition	of	the	Hessian	in	Equation	8.20	directly,	we	see	that	
	because	∂f/∂x0	=	4x0	+	x2.	Similar	calculations	give	us	the	rest	of

the	Hessian	matrix:

In	this	case,	the	Hessian	is	constant,	not	a	function	of	x,	because	the	highest
power	of	a	variable	in	f(x)	is	2.

The	gradient	of	f(x),	using	our	column	vector	definition,	is



with	the	Jacobian	of	the	gradient	giving	the	following,	which	is	identical	to	the
matrix	we	found	by	direct	use	of	Equation	8.20.

Minima	and	Maxima
We	saw	in	Chapter	7	that	we	could	use	the	second	derivative	to	test	whether
critical	points	of	a	function	were	minima	(f′′	>	0)	or	maxima	(f′′	<	0).	We’ll	see
in	the	next	section	how	we	can	use	critical	points	in	optimization	problems.	For
now,	let’s	use	the	Hessian	to	find	critical	points	by	considering	its	eigenvalues.
We’ll	continue	with	the	example	above.	The	Hessian	matrix	is	3	×	3,	meaning
there	are	three	(or	fewer)	eigenvalues.	Again,	we’ll	save	time	and	use	NumPy	to
tell	us	what	they	are:

>>>	np.linalg.eig([[4,0,1],[0,-2,3],[1,3,0]])[0]
array([	4.34211128,	1.86236874,	-4.20448002])

Two	of	the	three	eigenvalues	are	positive,	and	one	is	negative.	If	all	three
were	positive,	the	critical	point	would	be	a	minimum.	Likewise,	if	all	three	were
negative,	the	critical	point	would	be	a	maximum.	Notice	that	the
minimum/maximum	label	is	the	opposite	of	the	sign,	just	like	the	single-variable
case.	However,	if	at	least	one	eigenvalue	is	positive	and	another	negative,	which
is	the	case	with	our	example,	the	critical	point	is	a	saddle	point.

It	seems	natural	to	ask	whether	the	Hessian	of	a	vector-valued	function,	f(x),
exists.	After	all,	we	can	calculate	the	Jacobian	of	such	a	function;	we	did	so
above	to	show	that	the	Hessian	is	the	Jacobian	of	the	gradient.

It	is	possible	to	extend	the	Hessian	to	a	vector-valued	function.	However,	the
result	is	no	longer	a	matrix,	but	an	order-3	tensor.	To	see	this	is	so,	consider	the
definition	of	a	vector-valued	function:



We	can	think	of	a	vector-valued	function,	a	vector	field,	as	a	vector	of	scalar
functions	of	a	vector.	We	could	calculate	the	Hessian	of	each	of	the	m	functions
in	f	to	get	a	vector	of	matrices,

but	a	vector	of	matrices	is	a	3D	object.	Think	of	an	RGB	image:	a	3D	array
made	up	of	three	2D	images,	one	each	for	the	red,	green,	and	blue	channels.
Therefore,	while	possible	to	define	and	calculate,	the	Hessian	of	a	vector-valued
function	is	beyond	our	current	scope.

Optimization
In	deep	learning,	you’re	most	likely	to	see	the	Hessian	in	reference	to
optimization.	Training	a	neural	network	is,	to	a	first	approximation,	an
optimization	problem—the	goal	is	to	find	the	weights	and	biases	leading	to	a
minimum	in	the	loss	function	landscape.

In	Chapter	7,	we	saw	that	the	gradient	provides	information	on	how	to	move
toward	a	minimum.	An	optimization	algorithm,	like	gradient	descent,	the	subject
of	Chapter	11,	uses	the	gradient	as	a	guide.	As	the	gradient	is	a	first	derivative	of
the	loss	function,	algorithms	based	solely	on	the	gradient	are	known	as	first-
order	optimization	methods.

The	Hessian	provides	information	beyond	the	gradient.	As	a	second
derivative,	the	Hessian	contains	information	about	how	the	loss	landscape’s
gradient	is	changing,	that	is,	its	curvature.	An	analogy	from	physics	might	help
here.	A	particle’s	motion	in	one	dimension	is	described	by	some	function	of
time,	x(t).	The	first	derivative,	the	velocity,	is	dx/dt	=	v(t).	The	velocity	tells	us
how	quickly	the	position	is	changing	in	time.	However,	the	velocity	might
change	with	time,	so	its	derivative,	dv/dt	=	a(t),	is	the	acceleration.	And,	if	the
velocity	is	the	first	derivative	of	the	position,	then	the	acceleration	is	the	second,
d2x/dt2	=	a(t).	Similarly,	the	second	derivative	of	the	loss	function,	the	Hessian,



provides	information	on	how	the	gradient	is	changing.	Optimization	algorithms
using	the	Hessian,	or	an	approximation	of	it,	are	known	as	second-order
optimization	methods.

Let’s	start	with	an	example	in	one	dimension.	We	have	a	function,	f(x),	and
we’re	currently	at	some	x0.	We	want	to	move	from	this	position	to	a	new
position,	x1,	closer	to	a	minimum	of	f(x).	A	first-order	algorithm	will	use	the
gradient,	here	the	derivative,	as	a	guide,	since	we	know	moving	in	the	direction
opposite	to	the	derivative	will	move	us	toward	a	lower	function	value.	Therefore,
for	some	step	size,	call	it	η	(eta),	we	can	write

x1	=	x0	−	η	f′(x0)

This	will	move	us	from	x0	toward	x1,	which	is	closer	to	the	minimum	of	f(x),
assuming	the	minimum	exists.

The	equation	above	makes	sense,	so	why	think	about	a	second-order
method?	The	second-order	method	comes	into	play	when	we	move	from	f(x)	to
f(x).	Now	we	have	a	gradient,	not	just	a	derivative,	and	the	landscape	of	f(x)
around	some	point	can	be	more	complex.	The	general	form	of	gradient	descent	is

x1	=	x0	−	η▽f(x0)

but	the	information	in	the	Hessian	can	be	of	assistance.	To	see	how,	we	first
need	to	introduce	the	idea	of	a	Taylor	series	expansion,	a	way	of	approximating
an	arbitrary	function	as	the	sum	of	a	series	of	terms.	We	use	Taylor	series
frequently	in	physics	and	engineering	to	simplify	complex	functions	in	the
vicinity	of	a	specific	point.	We	also	often	use	them	to	calculate	values	of
transcendental	functions	(functions	that	can’t	be	written	as	a	finite	set	of	basic
algebra	operations).	For	example,	it’s	likely	that	when	you	use	cos(x)	in	a
programming	language,	the	result	is	generated	by	a	Taylor	series	expansion	with
a	sufficient	number	of	terms	to	get	the	cosine	to	32-	or	64-bit	floating-point
precision:

In	general,	to	approximate	a	function,	f(x),	in	the	vicinity	of	a	point,	x	=	a,
the	Taylor	series	expansion	is



where	f(k)(a)	is	the	kth	derivative	of	f(x)	evaluated	at	point	a.
A	linear	approximation	of	f(x)	around	x	=	a	is

f(x)	≈	f(a)	+	f′(a)(x	-	a)

while	a	quadratic	approximation	of	f(x)	becomes

where	we	see	the	linear	approximation	using	the	first	derivative	and	the
quadratic	using	the	first	and	second	derivatives	of	f(x).	A	first-order	optimization
algorithm	uses	the	linear	approximation,	while	a	second-order	one	uses	the
quadratic	approximation.

Moving	from	a	scalar	function	of	a	scalar,	f(x),	to	a	scalar	function	of	a
vector,	f(x),	changes	the	first	derivative	to	a	gradient	and	the	second	derivative	to
the	Hessian	matrix,

with	Hf(a)	the	Hessian	matrix	for	f(x)	evaluated	at	the	point	a.	The	products’
order	changes	to	make	the	dimensions	work	out	properly,	as	we	now	have
vectors	and	a	matrix	to	deal	with.

For	example,	if	x	has	n	elements,	then	f(a)	is	a	scalar;	the	gradient	at	a	is	an
n-element	column	vector	multiplying	(x	−	a)⊤,	an	n-element	row	vector,
producing	a	scalar;	and	the	last	term	is	1	×	n	times	n	×	n	times	n	×	1,	leading	to	1
×	n	times	n	×	1,	which	is	also	a	scalar.

To	use	the	Taylor	series	expansions	for	optimization,	to	find	the	minimum	of
f,	we	can	use	Newton’s	method	in	much	the	same	way	used	in	Equation	8.18.
First,	we	rewrite	Equation	8.21	to	change	our	viewpoint	to	one	of	a	displacement
(Δx)	from	a	current	position	(x).	Equation	8.21	then	becomes

Equation	8.22	is	a	parabola	in	Δx,	and	we’re	using	it	as	a	stand-in	for	the



more	complex	shape	of	f	in	the	region	of	x	+	Δx.	To	find	the	minimum	of
Equation	8.22,	we	take	the	derivative	and	set	it	to	zero,	then	solve	for	Δx.	The
derivative	gives

which,	if	set	to	zero,	leads	to

Equation	8.23	tells	us	the	offset	from	a	current	position,	x,	that	would	lead	to
the	minimum	of	f(x)	if	f(x)	were	actually	a	parabola.	In	reality,	f(x)	isn’t	a
parabola,	so	the	Δx	of	Equation	8.23	isn’t	the	actual	offset	to	the	minimum	of
f(x).	However,	since	the	Taylor	series	expansion	used	the	actual	slope,	f′(x),	and
curvature,	f′′(x),	of	f(x)	at	x,	the	offset	of	Equation	8.23	is	a	better	estimate	of	the
actual	minimum	of	f(x)	than	the	linear	approximation,	assuming	there	is	a
minimum.

If	we	go	from	x	to	x	+	Δx,	there’s	no	reason	why	we	can’t	then	use	Equation
8.23	a	second	time,	calling	the	new	position	x.	Thinking	like	this	leads	to	an
equation	we	can	iterate:

for	x0,	some	initial	starting	point.
We	can	work	out	all	of	the	above	for	scalar	functions	with	vector	arguments,

f(x),	which	are	the	kind	we	most	often	encounter	in	deep	learning	via	the	loss
function.	Equation	8.24	becomes

where	the	reciprocal	of	the	second	derivative	becomes	the	inverse	of	the	Hessian
matrix	evaluated	at	xn.

Excellent!	We	have	an	algorithm	we	can	use	to	rapidly	find	the	minimum	of
a	function	like	f(x).	We	saw	above	that	Newton’s	method	converges	quickly,	so
using	it	to	minimize	a	loss	function	also	should	converge	quickly,	faster	than
gradient	descent,	which	only	considers	the	first	derivative.

If	this	is	the	case,	why	do	we	use	gradient	descent	to	train	neural	networks



If	this	is	the	case,	why	do	we	use	gradient	descent	to	train	neural	networks
instead	of	Newton’s	method?

There	are	several	reasons.	First,	we	haven’t	discussed	issues	arising	from	the
Hessian’s	applicability,	issues	related	to	the	Hessian	being	a	positive	definite
matrix.	A	symmetric	matrix	is	positive	definite	if	all	its	eigenvalues	are	positive.
Near	saddle	points,	the	Hessian	might	not	be	positive	definite,	which	can	cause
the	update	rule	to	move	away	from	the	minimum.	As	you	might	expect	with	a
simple	algorithm	like	Newton’s	method,	some	variations	try	to	address	issues
like	this,	but	even	if	problems	with	the	eigenvalues	of	the	Hessian	are	addressed,
the	computational	burden	of	using	the	Hessian	for	updating	network	parameters
is	what	stops	Newton’s	algorithm	in	its	tracks.

Every	time	the	network’s	weights	and	biases	are	updated,	the	Hessian
changes,	requiring	it	and	its	inverse	to	be	calculated	again.	Think	of	the	number
of	minibatches	used	during	network	training.	For	even	one	minibatch,	there	are	k
parameters	in	the	network,	where	k	is	easily	in	the	millions	to	even	billions.	The
Hessian	is	a	k	×	k	symmetric	and	positive	definite	matrix.	Inverting	the	Hessian
typically	uses	Cholesky	decomposition,	which	is	more	efficient	than	other
methods	but	is	still	an	(k3)	algorithm.	The	big-O	notation	indicates	that	the
algorithm’s	resource	use	scales	as	the	cube	of	the	size	of	the	matrix	in	time,
memory,	or	both.	This	means	doubling	the	number	of	parameters	in	the	network
increases	the	computational	time	to	invert	the	Hessian	by	a	factor	of	23	=	8	while
tripling	the	number	of	parameters	requires	some	33	=	27	times	as	much	effort,
and	quadrupling	some	43	=	64	times	as	much.	And	this	is	to	say	nothing	about
storing	the	k2	elements	of	the	Hessian	matrix,	all	floating-point	values.

The	computation	necessary	to	use	Newton’s	method	with	even	modest	deep
networks	is	staggering.	Gradient-based,	first-order	optimization	methods	are
about	all	we	can	use	for	training	neural	networks.

NOTE
This	statement	is	perhaps	a	bit	premature.	Recent	work	in	the	area	of
neuroevolution	has	demonstrated	that	evolutionary	algorithms	can
successfully	train	deep	models.	My	experimentation	with	swarm
optimization	techniques	and	neural	networks	lends	credence	to	this
approach	as	well.

That	first-order	methods	work	as	well	as	they	do	seems,	for	now,	to	be	a	very
happy	accident.



Some	Examples	of	Matrix	Calculus	Derivatives
We	conclude	the	chapter	with	some	examples	similar	to	the	kinds	of	derivatives
we	commonly	find	in	deep	learning.

Derivative	of	Element-Wise	Operations
Let’s	begin	with	the	derivative	of	element-wise	operations,	which	includes
things	like	adding	two	vectors	together.	Consider

which	is	the	straightforward	addition	of	two	vectors,	element	by	element.	What
does	∂f/∂a,	the	Jacobian	of	f,	look	like?	From	the	definition,	we	have

but	f0	only	depends	on	a0,	while	f1	depends	on	a1,	and	so	on.	Therefore,	all
derivatives	∂fi/∂aj	for	i	≠	j	are	zero.	This	removes	all	the	off-diagonal	elements
of	the	matrix,	leaving

since	∂fi/∂ai	=	1	for	all	i.	Similarly,	∂f/∂b	=	I	as	well.	Also,	if	we	change	from
addition	to	subtraction,	∂f/∂a	=	I,	but	∂f/∂b	=	−I.

If	the	operator	is	element-wise	multiplication	of	a	and	b,	f	=	a	⊗	b,	then	we
get	the	following,	where	the	diag(x)	notation	means	the	n	elements	of	vector	x
along	the	diagonal	of	an	n	×	n	matrix	that	is	zero	elsewhere.



Derivative	of	the	Activation	Function
Let’s	find	the	derivative	of	the	weights	and	bias	value	for	a	single	node	of	a
hidden	layer	in	a	feedforward	network.	Recall,	the	inputs	to	the	node	are	the
outputs	of	the	previous	layer,	x,	multiplied	term	by	term	by	the	weights,	w,	and
summed	along	with	the	bias	value,	b,	a	scalar.	The	result,	a	scalar,	is	passed	to
the	activation	function	to	produce	the	output	value	for	the	node.	Here,	we’re
using	the	rectified	linear	unit	(ReLU)	which	returns	its	argument	if	the	argument
is	positive.	If	the	argument	is	negative,	ReLU	returns	zero.	We	can	write	this
process	as

In	order	to	implement	backpropagation,	we	need	the	derivatives	of	Equation
8.25	with	respect	to	w	and	b.	Let’s	see	how	to	find	them.

We	begin	by	considering	the	pieces	of	Equation	8.25.	For	example,	from
Equation	8.9,	we	know	the	derivative	of	the	dot	product	with	respect	to	w	is

where	we	have	taken	advantage	of	the	fact	that	the	dot	product	is	commutative,
w	•	x	=	x	•	w.	Also,	since	b	does	not	depend	on	w,	we	have



What	about	the	derivative	of	ReLU?	By	definition,

implying	that

since	∂z/∂z	=	1.
To	find	the	derivatives	of	Equation	8.25	with	respect	to	w	and	b,	we	need	the

chain	rule	and	the	results	above.	Let’s	start	with	w.	The	chain	rule	tells	us	how

with	z	=	w	•	x	+	b	and	y	=	ReLU(z).
We	know	∂y/∂z;	it’s	the	two	cases	above	for	the	ReLU,	Equation	8.27.	So

now	we	have

and	we	know	∂z/∂w	=	x⊤;	it’s	Equation	8.26.	Therefore,	our	final	result	is

where	we’ve	replaced	z	with	w	•	x	+	b.
We	follow	much	the	same	procedure	to	find	∂y/∂b,	as

but	∂y/∂z	is	0	or	1,	depending	on	the	z’s	sign.	Likewise,	∂z/∂b	=	1,	which	leads	to



Summary
In	this	dense	chapter,	we	learned	about	matrix	calculus,	including	working	with
derivatives	of	functions	involving	vectors	and	matrices.	We	worked	through	the
definitions	and	discussed	some	identities.	We	then	introduced	the	Jacobian	and
Hessian	matrices	as	analogs	for	first	and	second	derivatives	and	learned	how	to
use	them	in	optimization	problems.	Training	a	deep	neural	network	is,
fundamentally,	an	optimization	problem,	so	the	potential	utility	of	the	Jacobian
and	Hessian	is	clear,	even	if	the	latter	can’t	be	easily	used	for	large	neural
networks.	We	ended	the	chapter	with	some	examples	for	derivatives	of
expressions	found	in	deep	learning.

This	concludes	the	general	mathematics	portion	of	the	book.	We’ll	now	turn
our	attention	to	using	what	we’ve	learned	to	understand	the	workings	of	deep
neural	networks.	Let’s	begin	with	a	discussion	of	how	data	flows	through	a
neural	network	model.



9
DATA	FLOW	IN	NEURAL	NETWORKS

In	this	chapter,	I’ll	present	how	data	flows	through	a	trained	neural	network.	In
other	words,	we’ll	look	at	how	to	go	from	an	input	vector	or	tensor	to	the	output,
and	the	form	the	data	takes	along	the	way.	If	you’re	already	familiar	with	how
neural	networks	function,	great,	but	if	not,	walking	through	how	data	flows	from
layer	to	layer	will	help	you	build	an	understanding	of	the	processes	involved.

First,	we’ll	look	at	how	we	represent	data	in	two	different	kinds	of	networks.
Then,	we’ll	work	through	a	traditional	feedforward	network	to	give	ourselves	a
solid	foundation.	We’ll	see	just	how	compact	inference	with	a	neural	network
can	be	in	terms	of	code.	Finally,	we’ll	follow	data	through	a	convolutional
neural	network	by	introducing	convolutional	and	pooling	layers.	The	goal	of	this
chapter	isn’t	to	present	how	popular	toolkits	pass	data	around.	The	toolkits	are
highly	optimized	pieces	of	software,	and	such	low-level	knowledge	isn’t	helpful
to	us	at	this	stage.	Instead,	the	goal	is	to	help	you	see	how	the	data	flows	from
input	to	output.

Representing	Data
In	the	end,	everything	in	deep	learning	is	about	data.	We	have	data	that	we’re
using	to	create	a	model,	which	we	test	with	more	data,	ultimately	letting	us	make
predictions	about	even	more	data.	We’ll	start	by	looking	at	how	we	represent
data	in	two	types	of	neural	networks:	traditional	neural	networks	and	deep
convolutional	networks.

Traditional	Neural	Networks



Traditional	Neural	Networks
For	a	traditional	neural	network	or	other	classical	machine	learning	models,	the
input	is	a	vector	of	numbers,	the	feature	vector.	The	training	data	is	a	collection
of	these	vectors,	each	with	an	associated	label.	(We’ll	restrict	ourselves	to	basic
supervised	learning	in	this	chapter.)	A	collection	of	feature	vectors	is
conveniently	implemented	as	a	matrix,	where	each	row	is	a	feature	vector	and
the	number	of	rows	matches	the	number	of	samples	in	the	dataset.	As	we	now
know,	a	computer	conveniently	represents	a	matrix	using	a	2D	array.	Therefore,
when	working	with	traditional	neural	networks	or	other	classical	models
(support	vector	machines,	random	forests,	and	so	on),	we’ll	represent	datasets	as
2D	arrays.

For	example,	the	iris	dataset,	which	we	first	encountered	in	Chapter	6,	has
four	features	in	each	feature	vector.	We	represented	it	as	a	matrix:

>>>	import	numpy	as	np
>>>	from	sklearn	import	datasets
>>>	iris	=	datasets.load_iris()
>>>	X	=	iris.data[:5]
>>>	X
array([[5.1,	3.5,	1.4,	0.2],
							[4.9,	3.	,	1.4,	0.2],
							[4.7,	3.2,	1.3,	0.2],
							[4.6,	3.1,	1.5,	0.2],
							[5.	,	3.6,	1.4,	0.2]])
>>>	Y	=	iris.target[:5]

Here,	we’ve	shown	the	first	five	samples	as	we	did	in	Chapter	6.	The	samples
above	are	all	for	class	0	(I.	setosa).	To	pass	this	knowledge	to	the	model,	we
need	a	matching	vector	of	class	labels;	X[i]	returns	the	feature	vector	for	sample	i,
and	Y[i]	returns	the	class	label.	The	class	label	is	usually	an	integer	and	counts	up
from	zero	for	each	class	in	the	dataset.	Some	toolkits	prefer	one-hot-encoded
class	labels,	but	we	can	easily	create	them	from	the	more	standard	integer	labels.

Therefore,	a	traditional	dataset	uses	matrices	between	layers	to	hold	weights,
with	the	input	and	output	of	each	layer	a	vector.	This	is	straightforward	enough.
What	about	a	more	modern,	deep	network?

Deep	Convolutional	Networks
Deep	networks	might	use	feature	vectors,	especially	if	the	model	implements	1D
convolutions,	but	more	often	than	not,	the	entire	point	of	using	a	deep	network	is
to	allow	convolutional	layers	to	take	advantage	of	spatial	relationships	in	the
data.	Usually,	this	means	the	inputs	are	images,	which	we	represent	using	2D



arrays.	But	the	input	doesn’t	always	need	to	be	an	image.	The	model	is	blissfully
unaware	of	what	the	input	represents;	only	the	model	designer	knows,	and	they
decide	the	architecture	based	on	that	knowledge.	For	simplicity,	we’ll	assume
the	inputs	are	images,	since	we’re	already	aware	of	how	computers	work	with
images,	at	least	at	a	high	level.

A	black-and-white	image,	or	one	with	shades	of	gray,	known	as	a	grayscale
image,	uses	a	single	number	to	represent	each	pixel’s	intensity.	Therefore,	a
grayscale	image	consists	of	a	single	matrix	represented	in	the	computer	as	a	2D
array.	However,	most	of	the	images	we	see	on	our	computers	are	color	images,
not	grayscale.	Most	software	represents	a	pixel’s	color	by	three	numbers:	the
amount	of	red,	the	amount	of	green,	and	the	amount	of	blue.	This	is	the	origin	of
the	RGB	label	given	to	color	images	on	a	computer.	There	are	many	other	ways
of	representing	colors,	but	RGB	is	by	far	the	most	common.	The	blending	of
these	primary	colors	allows	computers	to	display	millions	of	colors.	If	each	pixel
needs	three	numbers,	then	a	color	image	isn’t	a	single	2D	array,	but	three	2D
arrays,	one	for	each	color.

For	example,	in	Chapter	4,	we	loaded	a	color	image	from	sklearn.	Let’s	look	at
it	again	to	see	how	it’s	arranged	in	memory:

>>>	from	sklearn.datasets	import	load_sample_image
>>>	china	=	load_sample_image('china.jpg')
>>>	china.shape
(427,	640,	3)

The	image	is	returned	as	a	NumPy	array.	Asking	for	the	shape	of	the	array
returns	a	tuple:	(427,	640,	3).	The	array	has	three	dimensions.	The	first	is	the
height	of	the	image,	427	pixels.	The	second	is	the	width	of	the	image,	640
pixels.	The	third	is	the	number	of	bands	or	channels,	here	three	because	it’s	an
RGB	image.	The	first	channel	is	the	red	component	of	the	color	of	each	pixel,
the	second	the	green,	and	the	last	the	blue.	We	can	look	at	each	channel	as	a
grayscale	image	if	we	want:

>>>	from	PIL	import	Image
>>>	Image.fromarray(china).show()
>>>	Image.fromarray(china[:,:,0]).show()
>>>	Image.fromarray(china[:,:,1]).show()
>>>	Image.fromarray(china[:,:,2]).show()

PIL	refers	to	Pillow,	Python’s	library	for	working	with	images.	If	you	don’t
already	have	it	installed,	this	will	install	it	for	you:

pip3	install	pillow



pip3	install	pillow

Each	image	looks	similar,	but	if	you	place	them	side	by	side,	you’ll	notice
differences.	See	Figure	9-1.	The	net	effect	of	each	per-channel	image	creates	the
actual	color	displayed.	Replace	china[:,:,0]	with	just	china	to	see	the	full	color
image.

Figure	9-1:	The	red	(left),	green	(middle),	and	blue	(right)	china	image	channels

Inputs	to	deep	networks	are	often	multidimensional.	If	the	input’s	a	color
image,	we	need	to	use	a	3D	tensor	to	contain	the	image.	We’re	not	quite	done,
however.	Each	input	sample	to	the	model	is	a	3D	tensor,	but	we	seldom	work
with	a	single	sample	at	a	time.	When	training	a	deep	network,	we	use
minibatches,	sets	of	samples	processed	together	to	get	an	average	loss.	This
implies	yet	another	dimension	to	the	input	tensor,	one	that	lets	us	specify	which
member	of	the	minibatch	we	want.	Therefore,	the	input	is	a	4D	tensor:	N	×	H	×
W	×	C,	with	N	being	the	number	of	samples	in	the	minibatch,	H	the	height	of
each	image	in	the	minibatch,	W	the	width	of	each	image,	and	C	the	number	of
channels.	We’ll	sometimes	write	this	in	tuple	form	as	(N,	H,	W,	C).

Let’s	take	a	look	at	some	actual	data	meant	for	a	deep	network.	The	data	is
the	CIFAR-10	dataset.	It’s	a	widely	used	benchmark	dataset	and	is	available
here:	https://www.cs.toronto.edu/~kriz/cifar.html.	You	don’t	need	to	download
the	raw	dataset,	however.	We’ve	included	NumPy	versions	with	the	code	for	this
book.	As	mentioned	above,	we	need	two	arrays:	one	for	the	images	and	the	other
for	the	associated	labels.	You’ll	find	them	in	the	cifar10_test_images.npy	and
cifar10_test_labels.npy	files,	respectively.	Let’s	take	a	look:

>>>	images	=	np.load("cifar10_test_images.npy")
>>>	labels	=	np.load("cifar10_test_labels.npy")
>>>	images.shape
(10000,	32,	32,	3)
>>>	labels.shape
(10000,)

Notice	that	the	images	array	has	four	dimensions.	The	first	is	the	number	of

https://www.cs.toronto.edu/~kriz/cifar.html


images	in	the	array	(N	=	10,000).	The	second	and	third	tell	us	that	the	images	are
32×32	pixels.	The	last	tells	us	that	there	are	three	channels,	implying	the	dataset
consists	of	color	images.	Note	that,	in	general,	the	number	of	channels	might
refer	to	any	collection	of	data	grouped	that	way—it	need	not	be	an	actual	image.
The	labels	vector	has	10,000	elements	as	well.	These	are	the	class	labels,	of	which
there	are	10	classes,	a	mix	of	animals	and	vehicles.	For	example,

>>>	labels[123]
2
>>>	Image.fromarray(images[123]).show()

This	indicates	that	image	123	is	of	class	2	(bird)	and	that	the	label	is	correct;	the
image	displayed	should	be	that	of	a	bird.	Recall	that,	in	NumPy,	asking	for	a
single	index	returns	the	entire	subarray,	so	images[123]	is	equivalent	to
images[123,:,:,:].	The	fromarray	method	of	the	Image	class	converts	a	NumPy	array	to
an	image	so	show	can	display	it.

Working	with	minibatches	means	we	pass	a	subset	of	the	entire	dataset
through	the	model.	If	our	model	uses	minibatches	of	24,	then	the	input	to	the
deep	network,	if	using	CIFAR-10,	is	a	(24,	32,	32,	3)	array:	24	images,	each	of
which	has	32	rows,	32	columns,	and	3	channels.	We’ll	see	below	that	the	idea	of
channels	is	not	restricted	to	the	input	to	a	deep	network;	it	also	applies	to	the
shape	of	the	data	passed	between	layers.

We’ll	return	to	data	for	deep	networks	shortly.	But	for	now,	let’s	switch
gears	to	the	more	straightforward	topic	of	dataflow	in	a	traditional,	feedforward
neural	network.

Data	Flow	in	Traditional	Neural	Networks
As	we	indicated	above,	in	a	traditional	neural	network,	the	weights	between
layers	are	stored	as	matrices.	If	layer	i	has	n	nodes	and	layer	i	−	1	has	m	outputs,
then	the	weight	matrix	between	the	two	layers,	Wi,	is	an	n	×	m	matrix.	When	this
matrix	is	multiplied	on	the	right	by	the	m	×	1	column	vector	of	outputs	from
layer	i	−	1,	the	result	is	an	n	×	1	output	representing	the	input	to	the	n	nodes	for
layer	i.	Specifically,	we	calculate

ai	=	σ(Wiai−1	+	bi)

where	ai−1,	the	m	×	1	vector	of	outputs	from	layer	i	−	1,	multiplies	Wi	to	produce



an	n	×	1	column	vector.	We	add	bi,	the	bias	values	for	layer	i,	to	this	vector	and
apply	the	activation	function,	σ,	to	every	element	of	the	resulting	vector,	Wiai−1
+	bi,	to	produce	ai,	the	activations	for	layer	i.	We	feed	the	activations	to	layer	i	+
1	as	the	output	of	layer	i.	By	using	matrices	and	vectors,	the	rules	of	matrix
multiplication	automatically	calculate	all	the	necessary	products	without	explicit
loops	in	the	code.

Let’s	see	an	example	with	a	simple	neural	network.	We’ll	generate	a	random
dataset	with	two	features	and	then	split	this	dataset	into	train	and	test	groups.
We’ll	use	sklearn	to	train	a	simple	feedforward	neural	network	on	the	training	set.
The	network	has	a	single	hidden	layer	with	five	nodes	and	uses	a	rectified	linear
activation	function	(ReLU).	We’ll	then	test	the	trained	network	to	see	how	well
it	learned	and,	most	importantly,	look	at	the	actual	weight	matrices	and	bias
vectors.

To	build	the	dataset,	we’ll	select	a	set	of	points	in	2D	space	that	are	clustered
but	slightly	overlapping.	We	want	the	network	to	have	to	learn	something	that
isn’t	completely	trivial.	Here	is	the	code:

			from	sklearn.neural_network	import	MLPClassifier

			np.random.seed(8675309)
❶	x0	=	np.random.random(50)-0.3
			y0	=	np.random.random(50)+0.3
			x1	=	np.random.random(50)+0.3
			y1	=	np.random.random(50)-0.3
			x	=	np.zeros((100,2))
			x[:50,0]	=	x0;	x[:50,1]	=	y0
			x[50:,0]	=	x1;	x[50:,1]	=	y1
❷	y	=	np.array([0]*50+[1]*50)

❸	idx	=	np.argsort(np.random.random(100))
			x	=	x[idx];	y	=	y[idx]
			x_train	=	x[:75];	x_test	=	x[75:]
			y_train	=	y[:75];	y_test	=	y[75:]

We	need	the	MLPClassifier	class	from	sklearn,	so	we	load	it	first.	We	then	define
a	2D	dataset,	x,	consisting	of	two	clouds	of	50	points	each.	The	points	are
randomly	distributed	(x0,	y0	and	x1,	y1)	but	centered	at	(0.2,	0.8)	and	(0.8,	0.2),
respectively	❶.	Note,	we	set	the	NumPy	random	number	seed	to	a	fixed	value,
so	each	run	produces	the	same	set	of	numbers	we’ll	see	below.	Feel	free	to
remove	this	line	and	experiment	with	how	well	the	network	trains	for	various
generations	of	the	dataset.



We	know	the	first	50	points	in	x	are	from	what	we’ll	call	class	0,	and	the	next
50	points	are	class	1,	so	we	define	a	label	vector,	y	❷.	Finally,	we	randomize	the
order	of	the	points	in	x	❸,	being	careful	to	alter	the	labels	in	the	same	way,	and
we	split	them	into	a	training	set	(x_train)	and	labels	(y_train)	and	a	test	set	(x_test)
and	labels	(y_test).	We	keep	75	percent	of	the	data	for	training	and	leave	the
remaining	25	percent	for	testing.

Figure	9-2	shows	a	plot	of	the	full	dataset,	with	each	feature	on	one	of	the
axes.	The	circles	correspond	to	class	0	instances	and	the	squares	to	class	1
instances.	There	is	clear	overlap	between	the	two	classes.

Figure	9-2:	The	dataset	used	to	train	the	neural	network,	with	the	class	0	instances	shown	as	circles	and
the	class	1	instances	as	squares

We’re	now	ready	to	train	the	model.	The	sklearn	toolkit	makes	it	easy	for	us,	if
we	use	the	defaults:

❶	clf	=	MLPClassifier(hidden_layer_sizes=(5,))



			clf.fit(x_train,	y_train)

❷	score	=	clf.score(x_test,	y_test)
			print("Model	accuracy	on	test	set:	%0.4f"	%	score)

❸	W0	=	clf.coefs_[0].T
			b0	=	clf.intercepts_[0].reshape((5,1))
			W1	=	clf.coefs_[1].T
			b1	=	clf.intercepts_[1]

Training	involves	creating	an	instance	of	the	model	class	❶.	Notice	that	by
using	the	defaults,	which	include	using	a	ReLU	activation	function,	we	only
need	to	specify	the	number	of	nodes	in	the	hidden	layers.	We	want	one	hidden
layer	with	five	nodes,	so	we	pass	in	the	tuple	(5,).	Training	is	a	single	call	to	the
fit	function	passing	in	the	training	data,	x_train,	and	the	associated	labels,	y_train.
When	complete,	we	test	the	model	by	computing	the	accuracy	(score)	on	the	test
set	(x_test,	y_test)	and	display	the	result.
Neural	networks	are	initialized	randomly,	but	because	we	fixed	the	NumPy
random	number	seed	when	we	generated	the	dataset,	and	because	sklearn	uses	the
NumPy	random	number	generator	as	well,	the	outcome	of	training	the	network
should	be	the	same	for	each	run	of	the	code.	The	model	has	an	accuracy	of	92
percent	on	the	test	data	❷.	This	is	convenient	for	us	but	concerning	as	well—so
many	toolkits	use	NumPy	under	the	hood	that	interactions	due	to	fixing	the
random	number	seed	are	probable,	usually	undesirable,	and	perhaps	challenging
to	detect.

We’re	now	finally	ready	to	get	the	weight	matrices	and	bias	vectors	from	the
trained	network	❸.	Because	sklearn	uses	np.dot	for	matrix	multiplication,	we	take
the	transpose	of	the	weight	matrices,	W0	and	W1,	to	get	them	in	a	form	that’s
easier	to	follow	mathematically.	We’ll	see	precisely	why	this	is	necessary	below.
Likewise,	b0,	the	bias	vector	for	the	hidden	layer,	is	a	1D	NumPy	array,	so	we
change	it	to	a	column	vector.	The	output	layer	bias,	b1,	is	a	scalar,	as	there	is
only	one	output	for	this	network,	the	value	we	pass	to	the	sigmoid	function	to	get
the	probability	of	class	1	membership.

Let’s	walk	through	the	network	for	the	first	test	sample.	To	save	space,	we’ll
only	show	the	first	three	digits	of	the	numeric	values,	but	our	calculations	will
use	full	precision.	The	input	to	the	network	is

We	want	the	network	to	give	us	an	output	leading	to	the	likelihood	of	this	input
belonging	to	class	1.



belonging	to	class	1.
To	get	the	output	of	the	hidden	layer,	we	multiply	x	by	the	weight	matrix,

W0,	add	the	bias	vector,	b0,	and	pass	that	result	through	the	ReLU:

The	hidden	layer	to	output	transition	uses	the	same	form,	with	a0	in	place	of
x,	but	here,	there	is	no	ReLU	applied:

To	get	the	final	output	probability,	we	use	a1,	a	scalar	value,	as	the	argument
to	the	sigmoid	function,	also	called	the	logistic	function:



This	means	the	network	has	assigned	a	35.5	percent	likelihood	of	the	input	value
being	a	member	of	class	1.	The	usual	threshold	for	class	assignment	for	a	binary
model	is	50	percent,	so	the	network	would	assign	x	to	class	0.	A	peek	at	y_test[0]
tells	us	the	network	is	correct	in	this	case:	x	is	from	class	0.

Data	Flow	in	Convolutional	Neural	Networks
We	saw	above	how	data	flow	through	a	traditional	neural	network	was
straightforward	matrix-vector	math.	To	track	data	flow	through	a	convolutional
neural	network	(CNN),	we	need	to	learn	first	what	the	convolution	operation	is
and	how	it	works.	Specifically,	we’ll	learn	how	to	pass	data	through
convolutional	and	pooling	layers	to	a	fully	connected	layer	at	the	top	of	the
model.	This	sequence	accounts	for	many	CNN	architectures,	at	least	at	a
conceptual	level.

Convolution
Convolution	involves	two	functions	and	the	sliding	of	one	over	the	other.	If	the
functions	are	f(x)	and	g(x),	convolution	is	defined	as

Fortunately	for	us,	we’re	working	in	a	discrete	domain	and	more	often	than
not	with	2D	inputs,	so	the	integral	is	not	actually	used,	though	*	is	still	a	useful
notation	for	the	operation.

The	net	effect	of	Equation	9.1	is	to	slide	g(x)	over	f(x)	for	different	shifts.
Let’s	clarify	using	a	1D,	discrete	example.

Convolution	in	One	Dimension
Figure	9-3	shows	a	plot	on	the	bottom	and	two	sets	of	numbers	labeled	f	and	g
on	the	top.



Figure	9-3:	A	1D,	discrete	convolution

Let’s	start	with	the	numbers	shown	at	the	top	of	Figure	9-3.	The	first	row
lists	the	discrete	values	of	f.	Below	that	is	g,	a	three-element	linear	ramp.



Convolution	aligns	g	with	the	left	edge	of	f	as	shown.	We	multiply
corresponding	elements	between	the	two	arrays,

[2,	6,	15]	×	[−1,	0,	1]	=	[−2,	0,	15]

and	then	sum	the	resulting	values,

−2	+	0	+	15	=	13

to	produce	the	value	that	goes	in	the	indicated	element	of	the	output,	f	*	g.	To
complete	the	convolution,	g	slides	one	element	to	the	right,	and	the	process
repeats.	Note	that	in	Figure	9-3,	we’re	showing	every	other	alignment	of	f	and	g
for	clarity,	so	it’ll	appear	as	though	g	is	sliding	two	elements	to	the	right.	In
general,	we	refer	to	g	as	a	kernel,	the	set	of	values	that	slide	over	the	input,	f.

The	plot	on	the	bottom	of	Figure	9-3	is	f(x)	=	⌊255	exp(−0.5x2)⌋	for	x	in	[−3,
3]	at	the	points	marked	with	circles.	The	floor	operation	makes	the	output	an
integer	to	simplify	the	discussion	below.

The	square	points	in	Figure	9-3	are	the	output	of	the	convolution	of	f(x)	with
g(x)	=	[−1,	0,	1].

The	f	and	f	*	g	points	in	Figure	9-3	are	generated	via

x	=	np.linspace(-3,3,20)
f	=	(255*np.exp(-0.5*x**2)).astype("int32")
g	=	np.array([-1,0,1])
fp=	np.convolve(f,g[::-1],	mode='same')

This	code	requires	some	explanation.
First,	we	have	x,	a	vector	spanning	[−3,	3]	in	20	steps;	this	vector	generates	f

(f(x)	above).	We	want	f	to	be	of	integer	type,	which	is	what	astype	does	for	us.
Next,	we	define	g,	the	small	linear	ramp.	As	we’ll	see,	the	convolution	operation
slides	g	over	the	elements	of	f	to	produce	the	output.

The	convolution	operation	comes	next.	As	convolution	is	commonly	used,
NumPy	supplies	a	1D	convolution	function,	np.convolve.	The	first	argument	is	f,
and	the	second	is	g.	I’ll	explain	shortly	why	we	added	[::-1]	to	g	to	reverse	it.	I’ll
also	explain	the	meaning	of	mode='same'.	The	output	of	the	convolution	is	stored	in
fp.

The	first	position	shown	in	the	top	part	of	Figure	9-3	fills	in	the	13	in	the
output.	Where	does	the	6	to	the	left	of	the	13	come	from?	Convolution	has	issues
at	the	edges	of	f,	where	the	kernel	does	not	entirely	cover	the	input.	For	a	three-



element	kernel,	there	will	be	one	edge	element	on	each	end	of	f.	Kernels
typically	have	an	odd	number	of	values,	so	there	is	a	clear	middle	element.	If	g
had	five	elements,	there	would	be	two	elements	on	each	end	of	f	that	g	wouldn’t
cover.

Convolution	functions	need	to	make	a	choice	about	these	edge	cases.	One
option	would	be	to	return	only	the	valid	portion	of	the	convolution,	to	ignore	the
edge	cases.	If	we	had	used	this	approach,	called	valid	convolution,	the	output,	yp,
would	start	with	element	13	and	be	two	less	in	length	than	the	input,	y.

Another	approach	is	to	fill	in	missing	values	in	f	with	zero.	This	is	known	as
zero	padding,	and	we	typically	use	it	to	make	the	output	of	a	convolution
operation	the	same	size	as	the	input.

Using	mode='same'	with	np.convolve	selects	zero	padding.	This	explains	the	6	to
the	left	of	the	13.	It’s	what	we	get	when	adding	a	zero	before	the	2	in	f	and
applying	the	kernel:

[0,	2,	6]	×	[−1,	0,	1]	=	[0,	0,	6],	0	+	0	+	6	=	6

If	we	wanted	only	the	valid	output	values,	we	would	have	used	mode='valid'
instead.

The	call	to	np.convolve	above	didn’t	use	g.	We	passed	g[::-1]	instead,	the	reverse
of	g.	We	did	this	to	make	np.convolve	act	like	the	convolutions	used	in	deep	neural
networks.	From	a	mathematical	and	signal	processing	perspective,	convolution
uses	the	reverse	of	the	kernel.	The	np.convolve	function,	therefore,	reverses	the
kernel,	meaning	we	need	to	reverse	it	beforehand	to	get	the	effect	we	want.	To
be	technical,	if	we	perform	the	operation	we’ve	called	convolution	without
flipping	the	kernel,	we’re	actually	performing	cross-correlation.	This	issue
seldom	comes	up	in	deep	learning	because	we	learn	the	kernel	elements	during
training—we	don’t	assign	them	ahead	of	time.	With	that	in	mind,	any	flipping	of
the	kernel	by	the	toolkit	process	implementing	the	convolution	operation	won’t
affect	the	outcome,	because	the	learned	kernel	values	were	learned	with	that	flip
in	place.	We’ll	assume	going	forward	that	there	is	no	flip	and,	when	necessary,
we’ll	flip	the	kernels	we	give	to	NumPy	and	SciPy	functions.	Additionally,	we’ll
continue	to	use	the	term	convolution	in	this	no-flip-of-the-kernel	deep	learning
sense.

In	general,	convolution	with	discrete	inputs	involves	placing	the	kernel	over
the	input	starting	on	the	left,	multiplying	matching	elements,	summing,	and
putting	the	result	in	the	output	at	the	point	where	the	center	of	the	kernel
matches.	The	kernel	then	slides	one	element	to	the	right,	and	the	process	repeats.
We	can	extend	the	discrete	convolution	operation	to	two	dimensions.	Most



We	can	extend	the	discrete	convolution	operation	to	two	dimensions.	Most
modern	deep	CNNs	use	2D	kernels,	though	it’s	possible	to	use	1D	and	3D
kernels	as	well.

Convolution	in	Two	Dimensions
Convolution	with	a	2D	kernel	requires	a	2D	array.	Images	are	2D	arrays	of
values,	and	convolution	is	a	common	image	processing	operation.	For	example,
let’s	load	an	image,	the	face	of	the	raccoon	we	saw	in	Chapter	3,	and	alter	it	with
a	2D	convolution.	Consider	the	following:

from	scipy.signal	import	convolve2d
from	scipy.misc	import	face

img	=	face(True)	
img	=	img[:512,(img.shape[1]-612):(img.shape[1]-100)]

k	=	np.array([[1,0,0],[0,-8,0],[0,0,3]])
c	=	convolve2d(img,	k,	mode='same')

Here,	we’re	using	the	SciPy	convolve2d	function	from	the	signal	module.	First,	we
load	the	raccoon	image	and	subset	it	to	a	512×512-pixel	image	of	the	raccoon’s
face	(img).	Next,	we	define	a	3	×	3	kernel,	k.	Lastly,	we	convolve	the	kernel,	as	it
is,	with	the	face	image,	storing	the	result	in	c.	The	mode='same'	keyword	zero	pads
the	image	to	handle	the	edge	cases.

The	code	above	leads	to

img[:8,:8]:
				[[	88	97	112	127	116		97		84		84]
					[	62	70	100	131	126		88		52		51]
					[	41	46		87	127	146	116		78		56]
					[	42	45		76	107	145	137	112		76]
					[	58	59		69		79	111	106		90		68]
					[	74	73		68		60		72		74		72		67]
					[	92	87		75		63		57		74		91		93]
					[105	97		85		74		60		79	102	110]]

k:
				[[	1		0	0]
					[	0	-8	0]
					[	0		0	3]]

c[1:8,1:8]:
				[[-209	-382	-566	-511	-278		-69	-101]
					[-106	-379	-571	-638	-438	-284	-241]
					[-168	-391	-484	-673	-568	-480	-318]



					[-278	-357	-332	-493	-341	-242	-143]
					[-335	-304	-216	-265	-168	-165	-184]
					[-389	-307	-240	-197	-274	-396	-427]
					[-404	-331	-289	-215	-368	-476	-488]]

Here,	we’re	showing	the	upper	8	×	8	corner	of	the	image	and	the	valid	portion	of
the	convolution.	Recall,	the	valid	portion	is	the	part	where	the	kernel	completely
covers	the	input	array.

For	the	kernel	and	the	image,	the	first	valid	convolution	output	is	−209.
Mathematically,	the	first	step	is	element-wise	multiplication	with	the	kernel,

followed	by	a	summation,

264	+	0	+	0	+	0	+	(−560)	+	0	+	0	+	0	+	87	=	−209

Notice	how	the	kernel	used	wasn’t	k	as	we	defined	it.	Instead,	convolve2d	flipped
the	kernel	top	to	bottom	and	then	left	to	right	before	it	was	applied.	The
remainder	of	c	flows	from	moving	the	kernel	one	position	to	the	right	and
repeating	the	multiplication	and	addition.	At	the	end	of	a	row,	the	kernel	moves
down	one	position	and	back	to	the	left,	until	the	entire	image	has	been	processed.
Deep	learning	toolkits	refer	to	this	motion	as	the	stride,	and	it	need	not	be	one
position	or	equal	in	the	horizontal	and	vertical	directions.

Figure	9-4	shows	the	effect	of	the	convolution.



Figure	9-4:	The	original	raccoon	face	image	(left)	and	the	convolution	result	(right)

To	make	the	image,	c	was	shifted	up,	so	the	minimum	value	was	zero,	and
then	divided	by	the	maximum	to	map	to	[0,	1].	Finally,	the	output	was	multiplied
by	255	and	displayed	as	a	grayscale	image.	The	original	face	image	is	on	the
left.	The	convolved	image	is	on	the	right.	Convolution	of	the	image	with	the
kernel	has	altered	the	image,	emphasizing	some	features	while	suppressing
others.

Convolving	kernels	with	images	isn’t	merely	an	exercise	to	help	us
understand	the	convolution	operation.	It’s	of	profound	importance	in	the	training
of	CNNs.	Conceptually,	a	CNN	consists	of	two	main	parts:	a	set	of	convolution
and	other	layers	taught	to	learn	a	new	representation	of	the	input,	and	a	top-level
classifier	taught	to	use	the	new	representation	to	classify	the	inputs.	It’s	the	joint
learning	of	the	new	representation	and	the	classifier	that	makes	CNNs	so
powerful.	The	key	to	learning	a	new	representation	of	the	input	is	the	set	of
learned	convolution	kernels.	How	the	kernels	alter	the	input	as	data	flows
through	the	CNN	creates	the	new	representation.	Training	with	gradient	descent
and	backpropagation	teaches	the	network	which	kernels	to	create.

We’re	now	in	a	position	to	follow	data	through	a	CNN’s	convolutional
layers.	Let’s	take	a	look.

Convolutional	Layers
Above,	we	discussed	how	deep	networks	pass	tensors	from	layer	to	layer	and
how	the	tensor	usually	has	four	dimensions,	N	×	H	×	W	×	C.	To	follow	data



through	a	convolutional	layer,	we’ll	ignore	N,	knowing	that	what	we	discuss	is
applied	to	each	sample	in	the	tensor.	This	leaves	us	with	inputs	to	the
convolutional	layer	that	are	H	×	W	×	C,	a	3D	tensor.

The	output	of	a	convolutional	layer	is	another	3D	tensor.	The	height	and
width	of	the	output	depend	on	the	convolution	kernels’	particulars	and	how	we
decide	to	handle	the	edges.	We’ll	use	valid	convolution	for	the	examples	here,
meaning	we’ll	discard	parts	of	the	input	that	the	kernel	doesn’t	wholly	cover.	If
the	kernel	is	3	×	3,	the	output	will	be	two	less	in	height	and	width,	one	less	for
each	edge.	A	5	×	5	kernel	loses	four	in	height	and	width,	two	less	for	each	edge.

The	convolutional	layer	uses	sets	of	filters	to	accomplish	its	goal.	A	filter	is	a
stack	of	kernels.	We	need	one	filter	for	each	of	the	desired	output	channels.	The
number	of	kernels	in	the	stack	of	each	filter	matches	the	number	of	channels	in
the	input.	So,	if	the	input	has	M	channels,	and	we	want	N	output	channels	using
K	×	K	kernels,	we	need	N	filters,	each	of	which	is	a	stack	of	M	K	×	K	kernels.

Additionally,	we	have	a	bias	value	for	each	of	the	N	filters.	We’ll	see	below
how	the	bias	is	used,	but	we	now	know	how	many	parameters	we	need	to	learn
to	implement	a	convolutional	layer	with	M	input	channels,	K	×	K	kernels,	and	N
outputs.	It’s	K	×	K	×	M	×	N	for	N	filters	with	K	×	K	×	M	parameters	each,	plus	N
bias	terms—one	per	filter.

Let’s	make	all	of	this	concrete.	We	have	a	convolutional	layer.	The	input	to
the	layer	is	an	(H,W,C)	=	(5,5,2)	tensor,	meaning	a	height	and	width	of	five	and
two	channels.	We’ll	use	a	3	×	3	kernel	with	valid	convolution,	so	the	output	in
height	and	width	is	3	×	3	from	the	5	×	5	input.	We	get	to	select	the	number	of
output	channels.	Let’s	use	three.	Therefore,	we	need	to	use	convolution	and
kernels	to	map	a	(5,5,2)	input	to	a	(3,3,3)	output.	From	what	we	discussed	above,
we	know	we	need	three	filters,	and	each	filter	has	3	×	3	×	2	parameters,	plus	a
bias	term.

Our	input	stack	is



We’ve	split	the	third	dimension	to	show	the	two	input	channels,	each	5	×	5.
The	three	filters	are

Again,	we’ve	separated	the	third	dimension.	Notice	how	each	filter	has	two	3	×	3
kernels,	one	for	each	channel	of	the	5	×	5	×	2	input.

Let’s	work	through	applying	the	first	filter,	f0.	We	need	to	convolve	the	first
channel	of	the	input	with	the	first	kernel	of	f0:

Then,	we	need	to	convolve	the	second	input	channel	with	the	second	kernel	of	f0:

Finally,	we	add	the	two	convolution	outputs	along	with	the	single	bias	scalar:



Finally,	we	add	the	two	convolution	outputs	along	with	the	single	bias	scalar:

We	now	have	the	first	3	×	3	output.
Repeating	the	process	above	for	f1	and	f2	gives

We’ve	completed	the	convolutional	layer	and	generated	the	3	×	3	×	3	output.
Many	toolkits	make	it	easy	to	add	operations	in	the	call	that	sets	up	the

convolutional	layer,	but,	conceptually,	these	are	layers	of	their	own	that	accept
the	3	×	3	×	3	output	as	an	input.	For	example,	if	requested,	Keras	will	apply	a
ReLU	to	the	output.	Applying	a	ReLU,	a	nonlinearity,	to	the	output	of	the
convolution	would	give	us

Note	that	all	elements	less	than	zero	are	now	zero.	We	use	a	nonlinearity
between	convolutional	layers	for	the	same	reason	we	use	a	nonlinear	activation
function	in	a	traditional	neural	network:	to	keep	the	convolutional	layers	from
collapsing	into	a	single	layer.	Notice	how	the	operation	to	generate	the	filter
outputs	is	purely	linear;	each	output	element	is	a	linear	combination	of	input
values.	Adding	the	ReLU	breaks	this	linearity.

One	reason	for	the	creation	of	convolutional	layers	was	to	reduce	the	number
of	learned	parameters.	For	the	example	above,	the	input	was	5	×	5	×	2	=	50
elements.	The	desired	output	was	3	×	3	×	3	=	27	elements.	A	fully	connected
layer	between	these	would	need	to	learn	50	×	27	=	1,350	weights,	plus	another
27	bias	values.	However,	the	convolutional	layer	learned	three	filters,	each	with
3	×	3	×	2	weights,	as	well	as	three	bias	values,	for	a	total	of	3(3	×	3	×	2)	+	3	=	57
parameters.	Adding	the	convolutional	layer	saved	learning	some	1,300
additional	weights.

The	output	of	a	convolutional	layer	is	often	the	input	to	a	pooling	layer.	Let’s
consider	that	type	of	layer	next.



Pooling	Layers
Convolutional	networks	often	use	pooling	layers	after	convolutional	layers.
Their	use	is	a	bit	controversial,	as	they	discard	information,	and	the	loss	of
information	might	make	it	harder	for	the	network	to	learn	spatial	relationships.
Pooling	is	generally	performed	in	the	spatial	domain	along	the	input	tensor’s
height	and	width	while	preserving	the	number	of	channels.

The	pooling	operation	is	straightforward:	you	move	a	window	over	the
image,	usually	2	×	2	with	a	stride	of	two,	to	group	values.	The	specific	pooling
operation	performed	on	each	group	is	either	max	or	average.	The	max-pooling
operation	preserves	the	maximum	value	in	the	window	and	discards	the	rest.
Average	pooling	takes	the	mean	of	the	values	in	the	window.

A	2	×	2	window	with	a	stride	of	two	results	in	a	reduction	of	a	factor	of	two
in	each	spatial	direction.	Therefore,	a	(24,24,32)	input	tensor	leads	to	a
(12,12,32)	output	tensor.	Figure	9-5	illustrates	the	process	for	maximum	pooling.

Figure	9-5:	Max	pooling	with	a	2	×	2	window	and	a	stride	of	two

One	channel	of	the	input,	with	a	height	and	width	of	eight,	is	on	the	left.	The
2	×	2	window	slides	over	the	input,	jumping	by	two,	so	there	is	no	overlap	of
windows.	The	output	for	each	2	×	2	region	of	the	input	is	the	maximum	value.
Average	pooling	would	instead	output	the	mean	of	the	four	numbers.	As	with
normal	convolution,	at	the	end	of	the	row,	the	window	slides	down	two
positions,	and	the	process	repeats	to	change	the	8	×	8	input	channel	to	a	4	×	4
output	channel.

As	mentioned	above,	pooling	without	overlap	in	the	windows	loses	spatial



information.	This	has	caused	some	in	the	deep	learning	community,	most
notably	Geoffrey	Hinton,	to	lament	its	use,	as	dropping	spatial	information
distorts	the	relationship	between	objects	or	parts	of	objects	in	the	input.	For
example,	applying	a	2	×	2	max	pooling	window	with	a	stride	of	one	instead	of
two	to	the	input	matrix	of	Figure	9-5	produces

This	is	a	7	×	7	output,	which	only	loses	one	row	and	column	of	the	original	8	×	8
input.	In	this	case,	the	input	matrix	was	randomly	generated,	so	we	should
expect	a	max-pooling	operation	biased	toward	eights	and	nines—there	is	no
structure	to	capture.	This	is	not	usually	the	case	in	an	actual	CNN,	of	course,	as
it’s	the	spatial	structure	inherent	in	the	inputs	we	wish	to	utilize.

Pooling	is	commonly	used	in	deep	learning,	especially	for	CNNs,	so	it’s
essential	to	understand	what	a	pooling	operation	is	doing	and	be	aware	of	its
potential	pitfalls.	Let’s	move	on	now	to	the	output	end	of	a	CNN,	typically	the
fully	connected	layers.

Fully	Connected	Layers
A	fully	connected	layer	in	a	deep	network	is,	in	terms	of	weights	and	data,
identical	to	a	regular	layer	in	a	traditional	neural	network.	Many	deep	networks
concerned	with	classification	pass	the	output	of	a	set	of	convolution	and	pooling
layers	to	the	first	fully	connected	layer	via	a	layer	that	flattens	the	tensor,
essentially	unraveling	it	into	a	vector.	Once	the	output	is	a	vector,	the	fully
connected	layer	uses	a	weight	matrix	in	the	same	way	a	traditional	neural
network	does	to	map	a	vector	input	to	a	vector	output.

Data	Flow	Through	a	Convolutional	Neural	Network
Let’s	put	all	the	pieces	together	to	see	how	data	flows	through	a	CNN	from	input
to	output.	We’ll	use	a	simple	CNN	trained	on	the	MNIST	dataset,	a	collection	of
28×28-pixel	grayscale	images	of	handwritten	digits.	The	architecture	is	shown
next.



Input	→	Conv(32)	→	Conv(64)	→	Pool	→	Flatten	→	Dense(128)	→	Dense(10)

The	input	is	a	28×28-pixel	grayscale	image	(one	channel).	The	convolutional
layers	(conv)	use	3	×	3	kernels	and	valid	convolution,	so	their	output’s	height
and	width	are	two	less	than	their	input.	The	first	convolutional	layer	learns	32
filters	while	the	second	learns	64.	We’re	ignoring	layers	that	do	not	affect	the
amount	of	data	in	the	network,	like	the	ReLU	layers	after	the	convolutional
layers.	The	max-pooling	layer	is	assumed	to	use	a	2	×	2	window	with	a	stride	of
two.	The	first	fully	connected	layer	(dense)	has	128	nodes,	followed	by	an
output	layer	of	10	nodes,	one	for	each	digit,	0	to	9.

The	tensors	passed	through	this	network	for	a	single	input	sample	are

(28,28,1)	→(26,26,32)	→(24,24,64)	→(12,12,64)	→	9216	→	128	→	10
		Input								Conv								Conv									Pool						Flatten		Dense			Dense

The	flatten	layer	unravels	the	(12,12,64)	tensor	to	form	a	vector	of	9,216
elements	(12	×	12	×	64	=	9,216).	We	pass	the	9,216	elements	that	the	flatten
layer	outputs	through	the	first	dense	layer	to	generate	128	output	values,	and	the
last	step	takes	the	128-element	vector	and	maps	it	to	10	output	values.

Note,	the	values	above	refer	to	the	data	passed	through	the	network	for	each
input	sample,	one	of	the	N	samples	in	the	minibatch.	This	is	not	the	same	as	the
number	parameters	(weights	and	biases)	the	network	needed	to	learn	during
training.

The	network	shown	above	was	trained	on	the	MNIST	digits	using	Keras.
Figure	9-6	illustrates	the	action	of	the	network	for	two	inputs	by	showing,
visually,	the	output	of	each	layer.	Specifically,	it	shows	each	layer’s	output	for
two	input	images,	depicting	a	4	and	a	6.



Figure	9-6:	A	visual	representation	of	the	output	of	a	CNN	for	two	sample	inputs

Starting	at	the	top,	we	see	the	two	inputs.	For	the	figure,	intensities	have
been	reversed,	so	darker	represents	higher	numeric	values.	The	input	is	a
(28,28,1)	tensor,	the	1	indicating	a	single-channel	grayscale	image.	Valid
convolution	with	a	3	×	3	kernel	returns	a	26	×	26	output.	The	first	convolutional
layer	learned	32	filters,	so	the	output	is	a	(26,26,32)	tensor.	In	the	figure,	we
show	the	output	of	each	filter	as	an	image.	Zero	is	scaled	to	midlevel	gray
(intensity	128),	more	positive	values	are	darker,	and	more	negative	values	are
lighter.	We	see	differences	in	how	the	inputs	have	been	affected	by	the	learned
filters.	The	single	input	channel	means	each	filter	in	this	layer	is	a	single	3	×	3
kernel.	Transitions	between	light	and	dark	indicate	edges	in	particular
orientations.

We	pass	the	(26,26,32)	tensor	through	a	ReLU	(not	shown	here)	and	then
through	the	second	convolutional	layer.	The	output	of	this	layer	is	a	(24,24,64)
tensor	shown	as	an	8	×	8	grid	of	images	in	the	figure.	We	can	see	many	parts	of



tensor	shown	as	an	8	×	8	grid	of	images	in	the	figure.	We	can	see	many	parts	of
the	input	digits	highlighted.

The	pooling	layer	preserves	the	number	of	channels	but	reduces	the	spatial
dimension	by	two.	In	image	form,	the	8	×	8	grid	of	24×24-pixel	images	is	now
an	8	×	8	grid	of	12×12-pixel	images.	The	flatten	operation	maps	the	(12,12,64)
tensor	to	a	9,216-element	vector.

The	output	of	the	first	dense	layer	is	a	vector	of	128	numbers.	For	Figure	9-
6,	we	show	this	as	a	128-element	bar	code.	The	values	run	from	left	to	right.	The
height	of	each	bar	is	unimportant	and	was	selected	only	to	make	the	bar	code
easy	to	see.	The	bar	code	generated	from	the	input	image	is	the	final
representation	that	the	top	layer	of	10	nodes	uses	to	create	the	output	passed
through	the	softmax	function.	The	highest	softmax	output	is	used	to	select	the
class	label,	“4”	or	“6.”

Therefore,	we	can	think	of	all	the	CNN	layers	through	the	first	dense	layer	as
mapping	inputs	to	a	new	representation,	one	that	makes	it	easy	for	a	simple
classifier	to	handle.	Indeed,	if	we	pass	10	examples	of	“4”	and	“6”	digits	through
this	network	and	display	the	resulting	128-node	feature	vectors,	we	get	Figure	9-
7,	where	we	can	easily	see	the	difference	between	the	digit	patterns.



Figure	9-7:	The	first	fully	connected	layer	outputs	for	multiple	“4”	and	“6”	inputs

Of	course,	the	entire	point	of	writing	digits	as	we	do	is	to	make	it	easy	for
humans	to	see	the	differences	between	them.	While	we	could	teach	ourselves	to
differentiate	digits	using	the	128-element	vector	images,	we	naturally	prefer	to
use	the	written	digits	because	of	habitual	use	and	the	fact	we	already	employ
highly	sophisticated	hierarchical	feature	detectors	via	our	brain’s	visual	system.

The	example	of	a	CNN	learning	a	new	input	representation	that’s	more
conducive	to	interpretation	by	a	machine	is	worth	bearing	in	mind,	since	what	a
human	might	use	in	an	image	as	a	clue	to	its	classification	is	not	necessarily
what	a	network	learns	to	use.	This	might	explain,	in	part,	why	certain
preprocessing	steps,	like	the	changes	made	to	training	samples	during	data
augmentation,	are	so	effective	in	helping	the	network	learn	to	generalize,	when
many	of	those	alterations	seem	strange	to	us.



Summary
The	goal	of	this	chapter	was	to	demonstrate	how	neural	networks	manipulate
data	from	input	to	output.	Naturally,	we	couldn’t	cover	all	network	types,	but,	in
general,	the	principles	are	the	same:	for	traditional	neural	networks,	data	is
passed	from	layer	to	layer	as	a	vector,	and	for	deep	networks,	it’s	passed	as	a
tensor,	typically	of	four	dimensions.

We	learned	how	to	present	data	to	a	network,	either	as	a	feature	vector	or	a
multidimensional	input.	We	followed	this	by	looking	at	how	to	pass	data	through
a	traditional	neural	network.	We	saw	how	the	vectors	used	as	input	to,	and
output	from,	a	layer	made	the	implementation	of	a	traditional	neural	network	a
straightforward	exercise	in	matrix-vector	multiplication	and	addition.

Next,	we	saw	how	a	deep	convolutional	network	passes	data	from	layer	to
layer.	We	learned	first	about	the	convolution	operation	and	then	about	the
specifics	of	how	convolutional	and	pooling	layers	manipulate	data	as	tensors—a
3D	tensor	for	each	sample	in	the	input	minibatch.	At	the	top	of	a	CNN	meant	for
classification	are	fully	connected	layers,	which	we	saw	act	precisely	as	they	do
in	a	traditional	neural	network.

We	ended	the	chapter	by	showing,	visually,	how	input	images	moved
through	a	CNN	to	produce	an	output	representation,	allowing	the	network	to
label	the	inputs	correctly.	We	briefly	discussed	what	this	process	might	mean	in
terms	of	what	a	network	picks	up	on	during	training	and	how	that	might	differ
from	what	a	human	naturally	sees	in	an	image.

We	are	now	in	a	position	to	discuss	backpropagation,	the	first	of	the	two
critical	algorithms	that,	together	with	gradient	descent,	make	training	deep
neural	networks	possible.



10
BACKPROPAGATION

Backpropagation	is	currently	the	core	algorithm	behind	deep	learning.	Without
it,	we	cannot	train	deep	neural	networks	in	a	reasonable	amount	of	time,	if	at	all.
Therefore,	practitioners	of	deep	learning	need	to	understand	what
backpropagation	is,	what	it	brings	to	the	training	process,	and	how	to	implement
it,	at	least	for	simple	networks.	For	the	purposes	of	this	chapter,	I’ll	assume	you
have	no	knowledge	of	backpropagation.

We’ll	begin	the	chapter	by	discussing	what	backpropagation	is	and	what	it
isn’t.	We’ll	then	work	through	the	math	for	a	trivial	network.	After	that,	we’ll
introduce	a	matrix	description	of	backpropagation	suitable	for	building	fully
connected	feedforward	neural	networks.	We’ll	explore	the	math	and	experiment
with	a	NumPy-based	implementation.

Deep	learning	toolkits	like	TensorFlow	don’t	implement	backpropagation	the
way	we	will	in	the	first	two	sections	of	this	chapter.	Instead,	they	use
computational	graphs,	which	we’ll	discuss	at	a	high	level	to	conclude	the
chapter.

What	Is	Backpropagation?
In	Chapter	7,	we	introduced	the	idea	of	the	gradient	of	a	scalar	function	of	a
vector.	We	worked	with	gradients	again	in	Chapter	8	and	saw	their	connection	to
the	Jacobian	matrix.	Recall	in	that	chapter,	we	discussed	how	training	a	neural
network	is	essentially	an	optimization	problem.	We	know	training	a	neural
network	involves	a	loss	function,	a	function	of	the	network’s	weights	and	biases



that	tells	us	how	well	the	network	performs	on	the	training	set.	When	we	do
gradient	descent,	we’ll	use	the	gradient	to	decide	how	to	move	from	one	part	of
the	loss	landscape	to	another	to	find	where	the	network	performs	best.	The	goal
of	training	is	to	minimize	the	loss	function	over	the	training	set.

That’s	the	high-level	picture.	Now	let’s	make	it	a	little	more	concrete.
Gradients	apply	to	functions	that	accept	vector	inputs	and	return	a	scalar	value.
For	a	neural	network,	the	vector	input	is	the	weights	and	biases,	the	parameters
that	define	how	the	network	performs	once	the	architecture	is	fixed.
Symbolically,	we	can	write	the	loss	function	as	L(θ),	where	θ	(theta)	is	a	vector
of	all	the	weights	and	biases	in	the	network.	Our	goal	is	to	move	through	the
space	that	the	loss	function	defines	to	find	the	minimum,	the	specific	θ	leading
to	the	smallest	loss,	L.	We	do	this	by	using	the	gradient	of	L(θ).	Therefore,	to
train	a	neural	network	via	gradient	descent,	we	need	to	know	how	each	weight
and	bias	value	contributes	to	the	loss	function;	that	is,	we	need	to	know	∂L/∂w,
for	some	weight	(or	bias)	w.

Backpropagation	is	the	algorithm	that	tells	us	what	∂L/∂w	is	for	each	weight
and	bias	of	the	network.	With	the	partial	derivatives,	we	can	apply	gradient
descent	to	improve	the	network’s	performance	on	the	next	pass	of	the	training
data.

Before	we	go	any	further,	a	word	on	terminology.	You’ll	often	hear	machine
learning	folks	use	backpropagation	as	a	proxy	for	the	entire	process	of	training	a
neural	network.	Experienced	practitioners	understand	what	they	mean,	but
people	new	to	machine	learning	are	sometimes	a	bit	confused.	To	be	explicit,
backpropagation	is	the	algorithm	that	finds	the	contribution	of	each	weight	and
bias	value	to	the	network’s	error,	the	∂L/∂w’s.	Gradient	descent	is	the	algorithm
that	uses	the	∂L/∂w’s	to	modify	the	weights	and	biases	to	improve	the	network’s
performance	on	the	training	set.

Rumelhart,	Hinton,	and	Williams	introduced	backpropagation	in	their	1986
paper	“Learning	Representations	by	Back-propagating	Errors.”	Ultimately,
backpropagation	is	an	application	of	the	chain	rule	we	discussed	in	Chapters	7
and	8.	Backpropagation	begins	at	the	network’s	output	with	the	loss	function.	It
moves	backward,	hence	the	name	“backpropagation,”	to	ever-lower	layers	of	the
network,	propagating	the	error	signal	to	find	∂L/∂w	for	each	weight	and	bias.
Note,	practitioners	frequently	shorten	the	name	to	“backprop.”	You’ll	encounter
that	term	often.

We’ll	work	through	backpropagation	by	example	in	the	following	two
sections.	For	now,	the	primary	thing	to	understand	is	that	it	is	the	first	of	two
pieces	we	need	to	train	neural	networks.	It	provides	the	information	required	by



the	second	piece,	gradient	descent,	the	subject	of	Chapter	11.

Backpropagation	by	Hand
Let’s	define	a	simple	neural	network,	one	that	accepts	two	input	values,	has	two
nodes	in	its	hidden	layer,	and	has	a	single	output	node,	as	shown	in	Figure	10-1.

Figure	10-1:	A	simple	neural	network

Figure	10-1	shows	the	network	with	its	six	weights,	w0	through	w5,	and	three
bias	values,	b0,	b1,	and	b2.	Each	value	is	a	scalar.

We’ll	use	sigmoid	activation	functions	in	the	hidden	layer,

and	no	activation	function	for	the	output	node.	To	train	the	network,	we’ll	use	a
squared-error	loss	function,

where	y	is	the	label,	zero	or	one,	for	a	training	example	and	a2	is	the	output	of
the	network	for	the	input	associated	with	y,	namely	x0	and	x1.

Let’s	write	the	equations	for	a	forward	pass	with	this	network,	a	pass	that
moves	left	to	right	from	the	input,	x0	and	x1,	to	the	output,	a2.	The	equations	are



Here,	we’ve	introduced	intermediate	values	z0	and	z1	to	be	the	arguments	to	the
activation	functions.	Notice	that	a2	has	no	activation	function.	We	could	have
used	a	sigmoid	here	as	well,	but	as	our	labels	are	either	0	or	1,	we’ll	learn	a	good
output	value	regardless.

If	we	pass	a	single	training	example	through	the	network,	the	output	is	a2.	If
the	label	associated	with	the	training	example,	x	=	(x0,	x1),	is	y,	the	squared-error
loss	is	as	indicated	in	Figure	10-1.

The	argument	to	the	loss	function	is	a2;	y	is	a	fixed	constant.	However,	a2
depends	directly	on	w4,	w5,	b2,	and	the	values	of	a1	and	a0,	which	themselves
depend	on	w0,	w1,	w2,	w3,	b0,	b1,	x0,	and	x1.	Therefore,	thinking	in	terms	of	the
weights	and	biases,	we	could	write	the	loss	function	as

L	=	L(w0,	w1,	w2,	w3,	w4,	w5,	b0,	b1,	b2;x0,	x1,	y)	=	L(θ;	x,	y)

Here,	θ	represents	the	weights	and	biases;	it’s	considered	the	variable.	The	parts
after	the	semicolon	are	constants	in	this	case:	the	input	vector	x	=	(x0,	x1)	and	the
associated	label,	y.

We	need	the	gradient	of	the	loss	function,	▽L(θ;	x,	y).	To	be	explicit,	we
need	all	the	partial	derivatives,	∂L/∂w5,	∂L/∂b0,	and	so	on,	for	all	weights	and
biases:	nine	partial	derivatives	in	total.

Here’s	our	plan	of	attack.	First,	we’ll	work	through	the	math	to	calculate
expressions	for	the	partial	derivatives	of	all	nine	values.	Second,	we’ll	write
some	Python	code	to	implement	the	expressions	so	we	can	train	the	network	of
Figure	10-1	to	classify	iris	flowers.	We’ll	learn	a	few	things	during	this	process.



Perhaps	the	most	important	is	that	calculating	the	partial	derivatives	by	hand	is,
to	be	understated,	tedious.	We’ll	succeed,	but	we’ll	see	in	the	following	section
that,	thankfully,	we	have	a	far	more	compact	way	we	can	represent
backpropagation,	especially	for	fully	connected	feedforward	networks.	Let’s	get
started.

Calculating	the	Partial	Derivatives
We	need	expressions	for	all	the	partial	derivatives	of	the	loss	function	for	the
network	in	Figure	10-1.	We	also	need	an	expression	for	the	derivative	of	our
activation	function,	the	sigmoid.	Let’s	begin	with	the	sigmoid,	as	a	clever	trick
writes	the	derivative	in	terms	of	the	sigmoid	itself,	a	value	calculated	during	the
forward	pass.

The	derivative	of	the	sigmoid	is	shown	next.

The	trick	of	Equation	10.2	is	to	add	and	subtract	one	in	the	numerator	to	change



the	form	of	the	factor	to	be	another	copy	of	the	sigmoid	itself.	So,	the	derivative
of	the	sigmoid	is	the	product	of	the	sigmoid	and	one	minus	the	sigmoid.	Looking
back	at	Equation	10.1,	we	see	that	the	forward	pass	computes	the	sigmoids,	the
activation	functions,	as	a0	and	a1.	Therefore,	during	the	derivation	of	the
backpropagation	partial	derivatives,	we’ll	be	able	to	substitute	a0	and	a1	via
Equation	10.3	for	the	derivative	of	the	sigmoid	to	avoid	calculating	it	a	second
time.

Let’s	start	with	the	derivatives.	True	to	backpropagation’s	name,	we’ll	work
backward	from	the	loss	function	and	apply	the	chain	rule	to	arrive	at	the
expressions	we	need.	The	derivative	of	the	loss	function,

is

This	means	that	everywhere	in	the	expressions	that	follow,	we	can	replace	∂L/
∂a2	with	a2	−	y.	Recall	y	is	the	label	for	the	current	training	example,	and	we
compute	a2	during	the	forward	pass	as	the	output	of	the	network.

Let’s	now	find	expressions	for	w5,	w4,	and	b2,	the	parameters	used	to
calculate	a2.	The	chain	rule	tells	us

since

We’ve	substituted	in	the	expression	for	a2	from	Equation	10.1.
Similar	logic	leads	to	expressions	for	w4	and	b2:



Fantastic!	We	have	three	of	the	partial	derivatives	we	need—only	six	more
to	go.	Let’s	write	the	expressions	for	b1,	w1,	and	w3,

where	we	use

substituting	a1	for	σ(z1)	as	we	calculate	a1	during	the	forward	pass.
A	similar	calculation	gives	us	expressions	for	the	final	three	partial

derivatives:

Whew!	That	was	tedious,	but	now	we	have	what	we	need.	Notice,	however,



Whew!	That	was	tedious,	but	now	we	have	what	we	need.	Notice,	however,
that	this	is	a	very	rigid	process—if	we	change	the	network	architecture,
activation	function,	or	loss	function,	we	need	to	derive	these	expressions	again.
Let’s	use	the	expressions	to	classify	iris	flowers.

Translating	into	Python
The	code	I’ve	presented	here	is	in	the	file	nn_by_hand.py.	Take	a	look	at	it	in	an
editor	to	see	the	overall	structure.	We’ll	start	with	the	main	function	(Listing	10-
1):

❶	epochs	=	1000
			eta	=	0.1

❷	xtrn,	ytrn,	xtst,	ytst	=	BuildDataset()

❸	net	=	{}
			net["b2"]	=	0.0
			net["b1"]	=	0.0
			net["b0"]	=	0.0
			net["w5"]	=	0.0001*(np.random.random()	-	0.5)
			net["w4"]	=	0.0001*(np.random.random()	-	0.5)
			net["w3"]	=	0.0001*(np.random.random()	-	0.5)
			net["w2"]	=	0.0001*(np.random.random()	-	0.5)
			net["w1"]	=	0.0001*(np.random.random()	-	0.5)
			net["w0"]	=	0.0001*(np.random.random()	-	0.5)

❹	tn0,fp0,fn0,tp0,pred0	=	Evaluate(net,	xtst,	ytst)

❺	net	=	GradientDescent(net,	xtrn,	ytrn,	epochs,	eta)

❻	tn,fp,fn,tp,pred	=	Evaluate(net,	xtst,	ytst)

			print("Training	for	%d	epochs,	learning	rate	%0.5f"	%	(epochs,	eta))
			print()
			print("Before	training:")
			print("			TN:%3d	FP:%3d"	%	(tn0,	fp0))
			print("			FN:%3d	TP:%3d"	%	(fn0,	tp0))
			print()
			print("After	training:")
			print("			TN:%3d	FP:%3d"	%	(tn,	fp))
			print("			FN:%3d	TP:%3d"	%	(fn,	tp))

Listing	10-1:	The	main	function

First,	we	set	the	number	of	epochs	and	the	learning	rate,	η	(eta)	❶.	The
number	of	epochs	is	the	number	of	passes	through	the	training	set	to	update	the



network	weights	and	biases.	The	network	is	straightforward,	and	our	dataset
tiny,	with	only	70	samples,	so	we	need	many	epochs	for	training.	Gradient
descent	uses	the	learning	rate	to	decide	how	to	move	based	on	the	gradient
values.	We’ll	explore	the	learning	rate	more	thoroughly	in	Chapter	11.

Next,	we	load	the	dataset	❷.	We’re	using	the	same	iris	dataset	we	used	in
Chapter	6	and	again	in	Chapter	9,	keeping	only	the	first	two	features	and	classes
0	and	1.	See	the	BuildDataset	function	in	nn_by_hand.py.	The	return	values	are
NumPy	arrays:	xtrn	(70	×	2)	and	xtst	(30	×	2)	for	training	and	test	data,	and	the
associated	labels	in	ytrn	and	ytst.

We	need	someplace	to	store	the	network	weights	and	biases.	A	Python
dictionary	will	do,	so	we	set	it	up	next	with	default	values	❸.	Notice	that	we	set
the	bias	values	to	zero	and	the	weights	to	small	random	values	in	[−0.00005,
+0.00005].	These	seem	to	work	well	enough	in	this	case.

The	remainder	of	main	evaluates	the	randomly	initialized	network	(Evaluate	❹)
on	the	test	data,	performs	gradient	descent	to	train	the	model	(GradientDescent	❺),
and	evaluates	the	test	data	again	to	demonstrate	that	training	worked	❻.

Listing	10-2	shows	Evaluate	as	well	as	Forward,	which	Evaluate	calls.

def	Evaluate(net,	x,	y):
				out	=	Forward(net,	x)
				tn	=	fp	=	fn	=	tp	=	0
				pred	=	[]
				for	i	in	range(len(y)):
					❶	c	=	0	if	(out[i]	<	0.5)	else	1
								pred.append(c)
								if	(c	==	0)	and	(y[i]	==	0):
												tn	+=	1
								elif	(c	==	0)	and	(y[i]	==	1):
												fn	+=	1
								elif	(c	==	1)	and	(y[i]	==	0):
												fp	+=	1
								else:
												tp	+=	1
				return	tn,fp,fn,tp,pred
def	Forward(net,	x):
				out	=	np.zeros(x.shape[0])
				for	k	in	range(x.shape[0]):
					❷	z0	=	net["w0"]*x[k,0]	+	net["w2"]*x[k,1]	+	net["b0"]
								a0	=	sigmoid(z0)
								z1	=	net["w1"]*x[k,0]	+	net["w3"]*x[k,1]	+	net["b1"]
								a1	=	sigmoid(z1)
								out[k]	=	net["w4"]*a0	+	net["w5"]*a1	+	net["b2"]
				return	out



Listing	10-2:	The	Evaluate	function

Let’s	begin	with	Forward,	which	performs	a	forward	pass	over	the	data	in	x.
After	creating	a	place	to	hold	the	output	of	the	network	(out),	each	input	is	run
through	the	network	using	the	current	value	of	the	parameters	❷.	Notice	that	the
code	is	a	direct	implementation	of	Equation	10.1,	with	out[k]	in	place	of	a2.	When
all	inputs	have	been	processed,	we	return	the	collected	outputs	to	the	caller.

Now	let’s	look	at	Evaluate.	Its	arguments	are	a	set	of	input	features,	x,
associated	labels,	y,	and	the	network	parameters,	net.	Evaluate	first	runs	the	data
through	the	network	by	calling	Forward	to	populate	out.	These	are	the	raw,
floating-point	outputs	from	the	network.	To	compare	them	with	the	actual	labels,
we	apply	a	threshold	❶	to	call	outputs	<	0.5	class	0	and	outputs	≥	0.5	class	1.
The	predicted	label	is	appended	to	pred	and	tallied	by	comparing	it	to	the	actual
label	in	y.

If	the	actual	and	predicted	labels	are	both	zero,	the	model	has	correctly
identified	a	true	negative	(TN),	a	true	instance	of	class	0.	If	the	network	predicts
class	0,	but	the	actual	label	is	class	1,	we	have	a	false	negative	(FN),	a	class	1
instance	labeled	class	0.	Conversely,	labeling	a	class	0	instance	class	1	is	a	false
positive	(FP).	The	only	remaining	option	is	an	actual	class	1	instance	labeled	as
class	1,	a	true	positive	(TP).	Finally,	we	return	the	tallies	and	predictions	to	the
caller.

Listing	10-3	presents	GradientDescent,	which	Listing	10-1	calls	❺.	This	is	where
we	implement	the	partial	derivatives	calculated	above.

def	GradientDescent(net,	x,	y,	epochs,	eta):
	❶	for	e	in	range(epochs):
								dw0	=	dw1	=	dw2	=	dw3	=	dw4	=	dw5	=	db0	=	db1	=	db2	=	0.0

					❷	for	k	in	range(len(y)):
									❸	z0	=	net["w0"]*x[k,0]	+	net["w2"]*x[k,1]	+	net["b0"]
												a0	=	sigmoid(z0)
												z1	=	net["w1"]*x[k,0]	+	net["w3"]*x[k,1]	+	net["b1"]
												a1	=	sigmoid(z1)
												a2	=	net["w4"]*a0	+	net["w5"]*a1	+	net["b2"]

									❹	db2	+=	a2	-	y[k]
												dw4	+=	(a2	-	y[k])	*	a0

												dw5	+=	(a2	-	y[k])	*	a1
												db1	+=	(a2	-	y[k])	*	net["w5"]	*	a1	*	(1	-	a1)
												dw1	+=	(a2	-	y[k])	*	net["w5"]	*	a1	*	(1	-	a1)	*	x[k,0]
												dw3	+=	(a2	-	y[k])	*	net["w5"]	*	a1	*	(1	-	a1)	*	x[k,1]
												db0	+=	(a2	-	y[k])	*	net["w4"]	*	a0	*	(1	-	a0)



												dw0	+=	(a2	-	y[k])	*	net["w4"]	*	a0	*	(1	-	a0)	*	x[k,0]
												dw2	+=	(a2	-	y[k])	*	net["w4"]	*	a0	*	(1	-	a0)	*	x[k,1]

								m	=	len(y)
					❺	net["b2"]	=	net["b2"]	-	eta	*	db2	/	m
								net["w4"]	=	net["w4"]	-	eta	*	dw4	/	m
								net["w5"]	=	net["w5"]	-	eta	*	dw5	/	m
								net["b1"]	=	net["b1"]	-	eta	*	db1	/	m
								net["w1"]	=	net["w1"]	-	eta	*	dw1	/	m
								net["w3"]	=	net["w3"]	-	eta	*	dw3	/	m
								net["b0"]	=	net["b0"]	-	eta	*	db0	/	m
								net["w0"]	=	net["w0"]	-	eta	*	dw0	/	m
								net["w2"]	=	net["w2"]	-	eta	*	dw2	/	m

					return	net

Listing	10-3:	Using	GradientDescent	to	train	the	network

The	GradientDescent	function	contains	a	double	loop.	The	outer	loop	❶	is	over
epochs,	the	number	of	full	passes	through	the	training	set.	The	inner	loop	❷	is
over	the	training	examples,	one	at	a	time.	The	forward	pass	comes	first	❸	to
calculate	the	output,	a2,	and	intermediate	values.

The	next	block	of	code	implements	the	backward	pass	using	the	partial
derivatives,	Equations	10.4	through	10.8,	to	move	the	error	(loss)	backward
through	the	network	❹.	We	use	the	average	loss	over	the	training	set	to	update
the	weights	and	biases.	Therefore,	we	accumulate	the	contribution	to	the	loss	for
each	weight	and	bias	value	for	each	training	example.	This	explains	adding	each
new	contribution	to	the	total	over	the	training	set.

After	passing	each	training	example	through	the	net	and	accumulating	its
contribution	to	the	loss,	we	update	the	weights	and	biases	❺.	The	partial
derivatives	give	us	the	gradient,	the	direction	of	maximal	change;	however,	we
want	to	minimize,	so	we	move	in	the	direction	opposite	to	the	gradient,
subtracting	the	average	of	the	loss	due	to	each	weight	and	bias	from	its	current
value.

For	example,

net["b2"]	=	net["b2"]	-	eta	*	db2	/	m

is



where	η	=	0.1	is	the	learning	rate	and	m	is	the	number	of	samples	in	the	training
set.	The	summation	is	over	the	partial	for	b2	evaluated	for	each	input	sample,	xi,
the	average	value	of	which,	multiplied	by	the	learning	rate,	is	used	to	adjust	b2
for	the	next	epoch.	Another	name	we	frequently	use	for	the	learning	rate	is	step
size.	This	parameter	controls	how	quickly	the	weights	and	biases	of	the	network
step	through	the	loss	landscape	toward	a	minimum	value.

Our	implementation	is	complete.	Let’s	run	it	to	see	how	well	it	does.

Training	and	Testing	the	Model
Let’s	take	a	look	at	the	training	data.	We	can	plot	the	features,	one	on	each	axis,
to	see	how	easy	it	might	be	to	separate	the	two	classes.	The	result	is	Figure	10-2,
with	class	0	as	circles	and	class	1	as	squares.

Figure	10-2:	The	iris	training	data	showing	class	0	(circles)	and	class	1	(squares)



It’s	straightforward	to	see	that	the	two	classes	are	quite	separate	from	each
other	so	that	even	our	elementary	network	with	two	hidden	neurons	should	be
able	to	learn	the	difference	between	them.	Compare	this	plot	with	the	left	side	of
Figure	6-2,	which	shows	the	first	two	features	for	all	three	iris	classes.	If	we	had
included	class	2	in	our	dataset,	two	features	would	not	be	enough	to	separate	all
three	classes.

Run	the	code	with

python3	nn_by_hand.py

For	me,	this	produces

Training	for	1000	epochs,	learning	rate	0.10000

Before	training:
				TN:	15	FP:	0
				FN:	15	TP:	0

After	training:
				TN:	14	FP:	1
				FN:	1	TP:	14

We’re	told	training	used	1,000	passes	through	the	training	set	of	70
examples.	This	is	the	outer	loop	of	Listing	10-3.	We’re	then	presented	with	two
tables	of	numbers,	characterizing	the	network	before	training	and	after.	Let’s
walk	through	these	tables	to	understand	the	story	they	tell.

The	tables	are	known	by	several	names:	contingency	tables,	2	×	2	tables,	or
confusion	matrices.	The	term	confusion	matrix	is	the	most	general,	though	it’s
usually	reserved	for	multiclass	classifiers.	The	labels	count	the	number	of	true
positives,	true	negatives,	false	positives,	and	false	negatives	in	the	test	set.	The
test	set	includes	30	samples,	15	from	each	class.	If	the	network	is	perfect,	all
class	0	samples	will	be	in	the	TN	count,	and	all	class	1	in	the	TP	count.	Errors
are	FP	or	FN	counts.

The	randomly	initialized	network	labels	everything	as	class	0.	We	know	this
because	there	are	15	TN	samples	(those	that	are	truly	class	0)	and	15	FN	samples
(15	class	1	samples	that	are	labeled	class	0).	The	overall	accuracy	before	training
is	then	15/(15	+	15)	=	0.5	=	50	percent.

After	training,	the	1,000	passes	through	the	outer	loop	of	the	code	in	Listing
10-3,	the	test	data	is	almost	perfectly	classified,	with	14	of	the	15	class	0	and	14
of	the	15	class	1	labels	correctly	assigned.	The	overall	accuracy	is	now	(14	+
14)/(15	+	15)	=	28/30	=	93.3	percent—not	too	shabby	considering	our	model	has



a	single	hidden	layer	of	two	nodes.
Again,	this	exercise’s	main	point	is	to	see	how	tedious	and	potentially	error-

prone	it	is	to	calculate	derivatives	by	hand.	The	code	above	works	with	scalars;
it	doesn’t	process	vectors	or	matrices	to	take	advantage	of	any	symmetry
possible	by	using	a	better	representation	of	the	backpropagation	algorithm.
Thankfully,	we	can	do	better.	Let’s	look	again	at	the	backpropagation	algorithm
for	fully	connected	networks	and	see	if	we	can	use	vectors	and	matrices	to	arrive
at	a	more	elegant	approach.

Backpropagation	for	Fully	Connected	Networks
In	this	section,	we’ll	explore	the	equations	that	allow	us	to	pass	an	error	term
backward	from	the	output	of	the	network	to	the	input.	Additionally,	we’ll	see
how	to	use	this	error	term	to	calculate	the	necessary	partial	derivatives	of	the
weights	and	biases	for	a	layer	so	we	can	implement	gradient	descent.	With	all
the	essential	expressions	on	hand,	we’ll	implement	Python	classes	that	will	allow
us	to	build	and	train	fully	connected	feedforward	neural	networks	of	arbitrary
depth	and	shape.	We’ll	conclude	by	testing	the	classes	against	the	MNIST
dataset.

Backpropagating	the	Error
Let’s	begin	with	a	useful	observation:	the	layers	of	a	fully	connected	neural
network	can	be	thought	of	as	vector	functions:

y	=	f(x)

where	the	input	to	the	layer	is	x	and	the	output	is	y.	The	input,	x,	is	either	the
actual	input	to	the	network	for	a	training	sample	or,	if	working	with	one	of	the
hidden	layers	of	the	model,	the	previous	layer’s	output.	These	are	both	vectors;
each	node	in	a	layer	produces	a	single	scalar	output,	which,	when	grouped,
becomes	y,	a	vector	representing	the	output	of	the	layer.

The	forward	pass	runs	through	the	layers	of	the	network	in	order,	mapping	xi
to	yi	so	that	yi	becomes	xi+1,	the	input	to	layer	i	+	1.	After	all	layers	are
processed,	we	use	the	final	layer	output,	call	it	h,	to	calculate	the	loss,	L(h,	ytrue).
The	loss	is	a	measure	of	how	wrong	the	network	is	for	the	input,	x,	that	we
determine	by	comparing	it	to	the	true	label	ytrue.	Note	that	if	the	model	is
multiclass,	the	output	h	is	a	vector,	with	one	element	for	each	possible	class,	and



the	true	label	is	a	vector	of	zeros,	except	for	the	index	of	the	actual	class	label,
which	is	one.	This	is	why	many	toolkits,	like	Keras,	map	integer	class	labels	to
one-hot	vectors.

We	need	to	move	the	loss	value,	or	the	error,	back	through	the	network;	this
is	the	backpropagation	step.	To	do	this	for	a	fully	connected	network	using	per-
layer	vectors	and	weight	matrices,	we	need	to	first	see	how	to	run	the	forward
pass.	As	we	did	for	the	network	we	built	above,	we’ll	separate	applying	the
activation	function	from	the	action	of	a	fully	connected	layer.

For	example,	for	any	layer	with	the	input	vector	x	coming	from	the	layer
below,	we	need	to	calculate	an	output	vector,	y.	For	a	fully	connected	layer,	the
forward	pass	is

y	=	Wx	+	b

where	W	is	a	weight	matrix,	x	is	the	input	vector,	and	b	is	the	bias	vector.
For	an	activation	layer,	we	have

y	=	σ(x)

for	whatever	activation	function,	σ,	we	choose.	We’ll	stick	with	the	sigmoid	for
the	remainder	of	this	chapter.	Note	we	made	the	function	a	vector-valued
function.	To	do	this,	we	apply	the	scalar	sigmoid	function	to	each	element	of	the
input	vector	to	produce	the	output	vector:

σ(x)	=	[σ(x0)	σ(x1)	...	σ(xn−1)]⊤

A	fully	connected	network	consists	of	a	series	of	fully	connected	layers
followed	by	activation	layers.	Therefore,	the	forward	pass	is	a	chain	of
operations	that	begins	with	the	input	to	the	model	being	given	to	the	first	layer	to
produce	an	output,	which	is	then	passed	to	the	next	layer’s	input,	and	so	on	until
all	layers	have	been	processed.

The	forward	pass	leads	to	the	final	output	and	the	loss.	The	derivative	of	the
loss	function	with	respect	to	the	network	output	is	the	first	error	term.	To	pass
the	error	term	back	down	the	model,	we	need	to	calculate	how	the	error	term
changes	with	a	change	to	the	input	of	a	layer	using	how	the	error	changes	with	a
change	to	the	layer’s	output.	Specifically,	for	each	layer,	we	need	to	know	how
to	calculate



That	is,	we	need	to	know	how	the	error	term	changes	with	a	change	in	the	input
to	the	layer	given

which	is	how	the	error	term	changes	with	a	change	in	the	output	of	the	layer.
The	chain	rule	tells	us	how	to	do	it:

where	∂E/∂x	for	layer	i	becomes	∂E/∂y	for	layer	i	−	1	as	we	move	backward
through	the	network.

Operationally,	the	backpropagation	algorithm	becomes

1.	 Run	a	forward	pass	to	map	x	→	y,	layer	by	layer,	to	get	the	final	output,	h.

2.	 Calculate	the	value	of	the	derivative	of	the	loss	function	using	h	and	ytrue;
this	becomes	∂E/∂y	for	the	output	layer.

3.	 Repeat	for	all	earlier	layers	to	calculate	∂E/∂x	from	∂E/∂y,	causing	∂E/∂x
for	layer	i	to	become	∂E/∂y	for	layer	i	−	1.

This	algorithm	passes	the	error	term	backward	through	the	network.	Let’s
work	out	how	to	get	the	necessary	partial	derivatives	by	layer	type,	beginning
with	the	activation	layer.

We	will	assume	we	know	∂E/∂y	and	are	looking	for	∂E/∂x.	The	chain	rule
says



Here,	we’re	introducing	⊙	to	represent	the	Hadamard	product.	Recall	that	the
Hadamard	product	is	the	element-wise	multiplication	of	two	vectors	or	matrices.
(See	Chapter	5	for	a	refresher.)

We	now	know	how	to	pass	the	error	term	through	an	activation	layer.	The
only	other	layer	we’re	considering	is	a	fully	connected	layer.	If	we	expand
Equation	10.9,	we	get

since

The	result	is	W⊤,	not	W,	because	the	derivative	of	a	matrix	times	a	vector	in
denominator	notation	is	the	transpose	of	the	matrix	rather	than	the	matrix	itself.

Let	us	pause	for	a	bit	to	recap	and	think	about	the	form	of	Equations	10.10
and	10.11.	These	equations	tell	us	how	to	pass	the	error	term	backward	from
layer	to	layer.	What	are	the	shapes	of	these	values?	For	the	activation	layer,	if
the	input	has	k-elements,	then	the	output	also	has	k-elements.	Therefore,	the



relationship	in	Equation	10.10	should	map	a	k-element	vector	to	another	k-
element	vector.	The	error	term,	∂E/∂y,	is	a	k-element	vector,	as	is	the	derivative
of	the	activation	function,	σ′(x).	Finally,	the	Hadamard	product	between	the	two
also	outputs	a	k-element	vector,	as	needed.

For	the	fully	connected	layer,	we	have	an	m-element	input,	x;	an	n	×	m-
element	weight	matrix,	W;	and	an	output	vector,	y,	of	n-elements.	So	we	need	to
generate	an	m-element	vector,	∂E/∂x,	from	the	n-element	error	term,	∂E/∂y.
Multiplying	the	transpose	of	the	weight	matrix,	an	m	×	n-element	matrix,	by	the
error	term	does	result	in	an	m-element	vector,	since	m	×	n	by	n	×	1	is	m	×	1,	an
m-element	column	vector.

Calculating	Partial	Derivatives	of	the	Weights	and	Biases
Equations	10.10	and	10.11	tell	us	how	to	pass	the	error	term	backward	through
the	network.	However,	the	point	of	backpropagation	is	to	calculate	how	changes
in	the	weights	and	biases	affect	the	error	so	we	can	use	gradient	descent.
Specifically,	for	every	fully	connected	layer,	we	need	expressions	for

given

Let’s	start	with	∂E/∂b.	Applying	the	chain	rule	yet	again	gives



meaning	the	error	due	to	the	bias	term	for	a	fully	connected	layer	is	the	same	as
the	error	due	to	the	output.

The	calculation	for	the	weight	matrix	is	similar:

The	equation	above	tells	us	the	error	due	to	the	weight	matrix	is	a	product	of	the
output	error	and	the	input,	x.	The	weight	matrix	is	an	n	×	m-element	matrix,	as
the	forward	pass	multiplies	by	the	m-element	input	vector.	Therefore,	the	error
contribution	from	the	weights,	∂E/∂W,	also	must	be	an	n	×	m	matrix.	We	know
∂E/∂y	is	an	n-element	column	vector,	and	the	transpose	of	x	is	an	m-element	row
vector.	The	outer	product	of	the	two	is	an	n	×	m	matrix,	as	required.



Equations	10.10,	10.11,	10.12,	and	10.13	apply	for	a	single	training	example.
This	means	for	a	specific	input	to	the	network,	these	equations,	especially	10.12
and	10.13,	tell	us	the	contribution	to	the	loss	by	the	biases	and	weights	of	any
layer	for	that	input	sample.

To	implement	gradient	descent,	we	need	to	accumulate	these	errors,	the	∂E/
∂W	and	∂E/∂b	terms,	over	the	training	samples.	We	then	use	the	average	value
of	these	errors	to	update	the	weights	and	biases	at	the	end	of	every	epoch	or,	as
we’ll	implement	it,	minibatch.	As	gradient	descent	is	the	subject	of	Chapter	11,
all	we’ll	do	here	is	outline	how	we	use	backpropagation	to	implement	gradient
descent	and	leave	the	details	to	that	chapter	and	the	code	we’ll	implement	next.

In	general,	however,	to	train	the	network,	we	need	to	do	the	following	for
each	sample	in	the	minibatch:

1.	 Forward	pass	the	sample	through	the	network	to	create	the	output.	Along
the	way,	we	need	to	store	the	input	to	each	layer,	as	we	need	it	to
implement	backpropagation	(that	is,	we	need	x⊤	from	Equation	10.13).

2.	 Calculate	the	value	of	the	derivative	of	the	loss	function,	which	for	us	is	the
mean	squared	error,	to	use	as	the	first	error	term	in	back-propagation.

3.	 Run	through	the	layers	of	the	network	in	reverse	order,	calculating	∂E/∂W
and	∂E/∂b	for	each	fully	connected	layer.	These	values	are	accumulated	for
each	sample	in	the	minibatch	(ΔW,	Δb).

When	the	minibatch	samples	have	been	processed	and	the	errors
accumulated,	it’s	time	to	take	a	gradient	descent	step.	This	is	where	the	weights
and	biases	of	each	layer	are	updated	via

with	ΔW	and	Δb	being	the	accumulated	errors	over	the	minibatch	and	m	being
the	size	of	the	minibatch.	Repeated	gradient	descent	steps	lead	to	a	final	set	of
weights	and	biases—a	trained	network.

This	section	is	quite	math-heavy.	The	following	section	translates	the	math
into	code,	where	we’ll	see	that	for	all	the	math,	the	code,	because	of	NumPy	and
object-oriented	design,	is	quite	compact	and	elegant.	If	you’re	fuzzy	on	the



object-oriented	design,	is	quite	compact	and	elegant.	If	you’re	fuzzy	on	the
math,	I	suspect	the	code	will	go	a	long	way	toward	clarifying	things	for	you.

A	Python	Implementation
Our	implementation	is	in	the	style	of	toolkits	like	Keras.	We	want	the	ability	to
create	arbitrary,	fully	connected	networks,	so	we’ll	use	Python	classes	for	each
layer	and	store	the	architecture	as	a	list	of	layers.	Each	layer	maintains	its
weights	and	biases,	along	with	the	ability	to	do	a	forward	pass,	a	backward	pass,
and	a	gradient	descent	step.	For	simplicity,	we’ll	use	sigmoid	activations	and	the
squared	error	loss.

We	need	two	classes:	ActivationLayer	and	FullyConnectedLayer.	An	additional
Network	class	holds	the	pieces	together	and	handles	training.	The	classes	are	in	the
file	NN.py.	(The	code	here	is	modified	from	the	original	code	by	Omar	Aflak
and	is	used	with	his	permission.	See	the	GitHub	link	in	NN.py.	I	modified	the
code	to	use	minibatches	and	support	gradient	descent	steps	other	than	for	every
sample.)

Let’s	walk	through	each	of	the	three	classes,	starting	with	ActivationLayer	(see
Listing	10-4).	The	translation	of	the	math	we’ve	done	to	code	form	is	quite
elegant,	in	most	cases	a	single	line	of	NumPy.

class	ActivationLayer:
				def	forward(self,	input_data):
								self.input	=	input_data
								return	sigmoid(input_data)
				def	backward(self,	output_error):
								return	sigmoid_prime(self.input)	*	output_error
				def	step(self,	eta):
								return

Listing	10-4:	The	ActivationLayer	class

Listing	10-4	shows	ActivationLayer	and	includes	only	three	methods:	forward,
backward,	and	step.	The	simplest	is	step.	It	does	nothing,	as	there’s	nothing	for	an
activation	layer	to	do	during	gradient	descent	because	there	are	no	weights	or
bias	values.

The	forward	method	accepts	the	input	vector,	x,	stores	it	for	later	use,	and	then
calculates	the	output	vector,	y,	by	applying	the	sigmoid	activation	function.

The	backward	method	accepts	∂E/∂y,	the	output_error	from	the	layer	above.	It
then	returns	Equation	10.10	by	applying	the	derivative	of	the	sigmoid
(sigmoid_prime)	to	the	input	set	during	the	forward	pass,	multiplied	element-wise



by	the	error.
The	sigmoid	and	sigmoid_prime	helper	functions	are

def	sigmoid(x):
				return	1.0	/	(1.0	+	np.exp(-x))
def	sigmoid_prime(x):
				return	sigmoid(x)*(1.0	-	sigmoid(x))

The	FullyConnectedLayer	class	is	next.	It’s	more	complex	than	the	ActivationLayer
class,	but	not	significantly	so.	See	Listing	10-5.

class	FullyConnectedLayer:
				def	__init__(self,	input_size,	output_size):
					❶	self.delta_w	=	np.zeros((input_size,	output_size))
								self.delta_b	=	np.zeros((1,output_size))
								self.passes	=	0
					❷	self.weights	=	np.random.rand(input_size,	output_size)	-	0.5
								self.bias	=	np.random.rand(1,	output_size)	-	0.5

				def	forward(self,	input_data):
								self.input	=	input_data
					❸	return	np.dot(self.input,	self.weights)	+	self.bias

				def	backward(self,	output_error):
								input_error	=	np.dot(output_error,	self.weights.T)
								weights_error	=	np.dot(self.input.T,	output_error)
								self.delta_w	+=	np.dot(self.input.T,	output_error)
								self.delta_b	+=	output_error
								self.passes	+=	1
								return	input_error

				def	step(self,	eta):
					❹	self.weights	-=	eta	*	self.delta_w	/	self.passes
								self.bias	-=	eta	*	self.delta_b	/	self.passes
					❺	self.delta_w	=	np.zeros(self.weights.shape)
								self.delta_b	=	np.zeros(self.bias.shape)
								self.passes	=	0

Listing	10-5:	The	FullyConnectedLayer	class

We	tell	the	constructor	the	number	of	input	and	output	nodes.	The	number	of
input	nodes	(input_size)	specifies	the	number	of	elements	in	the	vector	coming	into
the	layer.	Likewise,	output_size	specifies	the	number	of	elements	in	the	output
vector.

Fully	connected	layers	accumulate	weight	and	bias	errors	over	the	minibatch,
the	∂E/∂W	terms	in	delta_w	and	the	∂E/∂b	terms	in	delta_b	❶.	Each	sample



processed	is	counted	in	passes.
We	must	initialize	neural	networks	with	random	weight	and	bias	values;

therefore,	the	constructor	sets	up	an	initial	weight	matrix	and	bias	vector	using
uniform	random	values	in	the	range	[−0.5,	0.5]	❷.	Notice,	the	bias	vector	is	1	×
n,	a	row	vector.	The	code	flips	the	ordering	from	the	equations	above	to	match
the	way	training	samples	are	usually	stored:	a	matrix	in	which	each	row	is	a
sample	and	each	column	a	feature.	The	computation	produces	the	same	results
because	scalar	multiplication	is	commutative:	ab	=	ba.

The	forward	method	stashes	the	input	vector	for	later	use	by	backward	and	then
calculates	the	output	of	the	layer,	multiplying	the	input	by	the	weight	matrix	and
adding	the	bias	term	❸.

Only	two	methods	remain.	The	backward	method	receives	∂E/∂y	(output_error)
and	calculates	∂E/∂x	(input_error),	∂E/∂W	(weights_error),	and	∂E/∂b	(output_error).	We
add	the	errors	to	the	running	error	total	for	the	layer,	delta_w	and	delta_b,	for	step	to
use.

The	step	method	includes	a	gradient	descent	step	for	a	fully	connected	layer.
Unlike	the	empty	method	of	ActivationLayer,	the	FullyConnectedLayer	has	plenty	to	do.
We	update	the	weight	matrix	and	bias	vector	using	the	average	error,	as	in
Equation	10.14	❹.	This	implements	the	gradient	descent	step	over	the
minibatch.	Finally,	we	reset	the	accumulators	and	counter	for	the	next	minibatch
❺.

The	Network	class	brings	everything	together,	as	shown	in	Listing	10-6.

class	Network:
				def	__init__(self,	verbose=True):
								self.verbose	=	verbose
						❶	self.layers	=	[]

				def	add(self,	layer):
						❷	self.layers.append(layer)

				def	predict(self,	input_data):
								result	=	[]
								for	i	in	range(input_data.shape[0]):
												output	=	input_data[i]
												for	layer	in	self.layers:
																output	=	layer.forward(output)
												result.append(output)
						❸	return	result

					def	fit(self,	x_train,	y_train,	minibatches,	learning_rate,	batch_size=64):
						❹	for	i	in	range(minibatches):



								err	=	0
								idx	=	np.argsort(np.random.random(x_train.shape[0]))[:batch_size]
								x_batch	=	x_train[idx]
								y_batch	=	y_train[idx]
						❺	for	j	in	range(batch_size):
												output	=	x_batch[j]
												for	layer	in	self.layers:
																output	=	layer.forward(output)

										❻	err	+=	mse(y_batch[j],	output)

										❼	error	=	mse_prime(y_batch[j],	output)
													for	layer	in	reversed(self.layers):
																	error	=	layer.backward(error)

						❽	for	layer	in	self.layers:
													layer.step(learning_rate)
									if	(self.verbose)	and	((i%10)	==	0):
														err	/=	batch_size
														print('minibatch	%5d/%d	error=%0.9f'	%	(i,	minibatches,	err))

Listing	10-6:	The	Network	class

The	constructor	for	the	Network	class	is	straightforward.	We	set	a	verbose	flag	to
toggle	displaying	the	mean	error	over	the	minibatch	during	training.	Successful
training	should	show	this	error	decreasing	over	time.	As	layers	are	added	to	the
network,	they	are	stored	in	layers,	which	the	constructor	initializes	❶.	The	add
method	adds	layer	objects	to	the	network	by	appending	them	to	layers	❷.

After	the	network	is	trained,	the	predict	method	generates	output	for	each	input
sample	in	input_data	with	a	forward	pass	through	the	layers	of	the	network.	Notice
the	pattern:	the	input	sample	is	assigned	to	output;	then	the	loop	over	layers	calls
the	forward	method	of	each	layer,	in	turn	passing	the	output	of	the	previous	layer
as	input	to	the	next;	and	so	on	through	the	entire	network.	When	the	loop	ends,
output	contains	the	output	of	the	final	layer,	so	it’s	appended	to	result,	which	is
returned	to	the	caller	❸.

Training	the	network	is	fit’s	job.	The	name	matches	the	standard	training
method	for	sklearn.	The	arguments	are	the	NumPy	array	of	sample	vectors,	one
per	row	(x_train),	and	their	labels	as	one-hot	vectors	(y_train).	The	number	of
minibatches	to	train	comes	next.	We’ll	discuss	minibatches	in	a	bit.	We	also
provide	the	learning	rate,	η	(eta),	and	an	optional	minibatch	size,	batch_size.

The	fit	method	uses	a	double	loop.	The	first	is	over	the	desired	number	of
minibatches	❹.	As	we	learned	earlier,	a	minibatch	is	a	subset	of	the	full	training
set,	and	an	epoch	is	one	full	pass	through	the	training	set.	Using	the	entire



training	set	is	known	as	batch	training,	and	batch	training	uses	epochs.
However,	there	is	good	reason	not	to	do	batch	training,	as	you’ll	see	in	Chapter
11,	so	the	concept	of	a	minibatch	was	introduced.	The	typical	minibatch	sizes
are	anywhere	from	16	to	128	samples	at	a	time.	Powers	of	two	are	often	used	to
make	things	nice	for	GPU-based	deep	learning	toolkits.	For	us,	there’s	no
difference	between	a	minibatch	of	64	or	63	samples	in	terms	of	performance.

We	select	most	minibatches	as	sequential	sets	of	the	training	data	to	ensure
all	the	data	is	used.	Here,	we’re	being	a	bit	lazy	and	instead	select	random
subsets	each	time	we	need	a	minibatch.	This	simplifies	the	code	and	adds	one
more	place	where	randomness	can	show	its	utility.	That’s	what	idx	gives	us,	a
random	ordering	of	indices	into	the	training	set,	keeping	only	the	first	batch_size
worth.	We	then	use	x_batch	and	y_batch	for	the	actual	forward	and	backward
passes.

The	second	loop	is	over	the	samples	in	the	minibatch	❺.	Samples	are	passed
individually	through	the	layers	of	the	network,	calling	forward	just	as	predict	does.
For	display	purposes,	the	actual	mean	squared	error	between	the	forward	pass
output	and	the	sample	label	is	accumulated	for	the	minibatch	❻.

The	backward	pass	begins	with	the	output	error	term,	the	derivative	of	the
loss	function,	mse_prime	❼.	The	pass	then	continues	backward	through	the	layers
of	the	network,	passing	the	previous	layer’s	output	error	as	input	to	the	layer
below,	directly	mirroring	the	forward	pass	process.

Once	the	loop	processes	all	the	minibatch	samples	❺,	it’s	time	to	take	a
gradient	descent	step	based	on	the	mean	error	each	layer	in	the	network
accumulated	over	the	samples	❽.	The	argument	to	step	needs	only	the	learning
rate.	The	minibatch	concludes	by	reporting	the	average	error	if	verbose	is	set	for
every	10th	minibatch.

We’ll	experiment	with	this	code	again	in	Chapter	11	as	we	explore	gradient
descent.	For	now,	let’s	test	it	with	the	MNIST	dataset	to	see	how	well	it	works.

Using	the	Implementation
Let’s	take	NN.py	for	a	spin.	We’ll	use	it	to	build	a	classifier	for	the	MNIST
dataset,	which	we	first	encountered	in	Chapter	9.	The	original	MNIST	dataset
consists	of	28×28-pixel	grayscale	images	of	handwritten	digits	with	black
backgrounds.	It’s	a	workhorse	of	the	machine	learning	community.	We’ll	resize
the	images	to	14×14	pixels	before	turning	them	into	vectors	of	196	elements	(=
14	×	14).

The	dataset	includes	60,000	training	images	and	10,000	test	images.	The



vectors	are	stored	in	NumPy	arrays;	see	the	files	in	the	dataset	directory.	The
code	to	generate	the	dataset	is	in	build_dataset.py.	If	you	want	to	run	the	code
yourself,	you’ll	need	to	install	Keras	and	OpenCV	for	Python	first.	Keras
supplies	the	original	set	of	images	and	maps	the	training	set	labels	to	one-hot
vectors.	OpenCV	rescales	the	images	from	28×28	to	14×14	pixels.

The	code	we	need	is	in	mnist.py	and	is	shown	in	Listing	10-7.

			import	numpy	as	np
			from	NN	import	*
❶	x_train	=	np.load("dataset/train_images_small.npy")
			x_test	=	np.load("dataset/test_images_small.npy")
			y_train	=	np.load("dataset/train_labels_vector.npy")
			y_test	=	np.load("dataset/test_labels.npy")

❷	x_train	=	x_train.reshape(x_train.shape[0],	1,	14*14)
			x_train	/=	255
			x_test	=	x_test.reshape(x_test.shape[0],	1,	14*14)
			x_test	/=	255

❸	net	=	Network()
			net.add(FullyConnectedLayer(14*14,	100))
			net.add(ActivationLayer())
			net.add(FullyConnectedLayer(100,	50))
			net.add(ActivationLayer())
			net.add(FullyConnectedLayer(50,	10))
			net.add(ActivationLayer())

❹	net.fit(x_train,	y_train,	minibatches=40000,	learning_rate=1.0)

❺	out	=	net.predict(x_test)
			cm	=	np.zeros((10,10),	dtype="uint32")
			for	i	in	range(len(y_test)):
							cm[y_test[i],np.argmax(out[i])]	+=	1

			print()
			print(np.array2string(cm))
			print()
			print("accuracy	=	%0.7f"	%	(np.diag(cm).sum()	/	cm.sum(),))

Listing	10-7:	Classifying	MNIST	digits

Notice	that	we	import	NN.py	right	after	NumPy.	We	load	the	training
images,	test	images,	and	labels	next	❶.	The	Network	class	expects	each	sample
vector	to	be	a	1	×	n	row	vector,	so	we	reshape	the	training	data	from	(60000,196)
to	(60000,1,196)—the	same	as	the	test	data	❷.	At	the	same	time,	we	scale	the	8-
bit	data	from	[0,	255]	to	[0,	1].	This	is	a	standard	preprocessing	step	for	image



data,	as	doing	so	makes	it	easier	for	the	network	to	learn.
Building	the	model	comes	next	❸.	First,	we	create	an	instance	of	the	Network

class.	Then,	we	add	the	input	layer	by	defining	a	FullyConnectedLayer	with	196
inputs	and	100	outputs.	A	sigmoid	activation	layer	follows	this.	We	then	add	a
second	fully	connected	layer	mapping	the	100	outputs	of	the	first	layer	to	50
outputs,	along	with	an	activation	layer.	Finally,	we	add	a	last	fully	connected
layer	mapping	the	50	outputs	of	the	previous	layer	to	10,	the	number	of	classes,
along	with	adding	its	activation	layer.	This	approach	mimics	common	toolkits
like	Keras.

Training	happens	by	calling	fit	❹.	We	specify	40,000	minibatches	using	the
default	minibatch	size	of	64	samples.	We	set	the	learning	rate	to	1.0,	which
works	well	in	this	instance.	Training	takes	some	17	minutes	on	my	old	Intel	i5
Ubuntu	system.	As	the	model	trains,	the	mean	error	over	the	minibatch	is
reported.	When	training	is	complete,	we	pass	the	10,000	test	samples	through	the
network	and	calculate	a	10	×	10	confusion	matrix	❺.	Recall	that	the	rows	of	the
confusion	matrix	are	the	true	class	labels,	here	the	actual	digits	0	through	9.	The
columns	correspond	to	the	predicted	labels,	the	largest	value	of	the	10	outputs
for	each	input	sample.	The	matrix	elements	are	the	counts	of	how	often	the	true
label	was	i,	and	the	assigned	label	was	j.	If	the	model	is	perfect,	the	matrix	is
purely	diagonal;	there	are	no	cases	where	the	true	label	and	model	label	disagree.
The	overall	accuracy	is	printed	last	as	the	diagonal	sum	divided	by	the	sum	of
the	matrix,	the	total	number	of	test	samples.

My	run	of	mnist.py	produced

minibatch	39940/40000		error=0.003941790
minibatch	39950/40000		error=0.001214253
minibatch	39960/40000		error=0.000832551
minibatch	39970/40000		error=0.000998448
minibatch	39980/40000		error=0.002377286
minibatch	39990/40000		error=0.000850956

[[	965				0				1			1			1			5			2			3			2				0]
	[			0	1121				3			2			0			1			3			0			5				0]
	[			6				0	1005			4			2			0			3			7			5				0]
	[			0				1				6	981			0			4			0			9			4				5]
	[			2				0				3			0	953			0			5			3			1			15]
	[			4				0				0		10			0	864			5			1			4				4]
	[			8				2				1			1			3			4	936			0			3				0]
	[			2				7			19			2			1			0			0	989			1				7]
	[			5				0				4			5			3			5			7			3	939				3]
	[			5				5				2		10			8			2			1			3			6	967]]



accuracy	=	0.9720000

The	confusion	matrix	is	strongly	diagonal,	and	the	overall	accuracy	is	97.2
percent.	This	isn’t	too	bad	of	a	result	for	a	simple	toolkit	like	NN.py	and	a	fully
connected	feedforward	network.	The	largest	error	that	the	network	made	was
confusing	sevens	for	twos	19	times	(element	[7,2]	of	the	confusion	matrix).	The
next	closest	error	was	confusing	fours	for	nines	15	times	(element	[4,9]).	Both	of
these	errors	make	sense:	sevens	and	twos	often	look	similar,	as	do	fours	and
nines.

We	started	this	chapter	with	a	network	we	created	that	included	two	inputs,
two	nodes	in	the	hidden	layer,	and	an	output.	The	file	iris.py	implements	the
same	model	by	adapting	the	dataset	to	what	Network	expects.	We	won’t	walk
through	the	code,	but	do	run	it.	When	I	do,	I	get	slightly	better	performance	on
the	test	set:	14	out	of	15	correct	for	class	0	and	15	out	of	15	for	class	1.

Sadly,	the	backpropagation	methods	detailed	here	and	in	the	previous	section
are	not	ultimately	flexible	enough	for	deep	learning.	Modern	toolkits	don’t	use
these	approaches.	Let’s	explore	what	deep	learning	toolkits	do	when	it	comes	to
backpropagation.

Computational	Graphs
In	computer	science,	a	graph	is	a	collection	of	nodes	(vertices)	and	edges
connecting	them.	We’ve	been	using	graphs	all	along	to	represent	neural
networks.	In	this	section,	we’ll	use	graphs	to	represent	expressions	instead.

Consider	this	simple	expression:

y	=	mx	+	b

To	evaluate	this	expression,	we	follow	agreed-upon	rules	regarding	operator
precedence.	Following	the	rules	implies	a	sequence	of	primitive	operations	that
we	can	represent	as	a	graph,	as	shown	in	Figure	10-3.

Figure	10-3:	A	computational	graph	implementing	y	=	mx	+	b

Data	flows	through	the	graph	of	Figure	10-3	along	the	arrows,	from	left	to



right.	Data	originates	in	sources,	here	x,	m,	and	b,	and	flows	through	operators,
*	and	+,	to	the	output,	y.

Figure	10-3	is	a	computational	graph—a	graph	specifying	how	to	evaluate
an	expression.	Compilers	for	languages	like	C	generate	computational	graphs	in
some	form	to	translate	high-level	expressions	into	sequences	of	machine
language	instructions.	For	the	expression	above,	first	the	x	and	m	values	are
multiplied,	and	the	resulting	output	of	the	multiplication	operation	is	passed	to
an	addition	operation,	along	with	b,	to	produce	the	final	output,	y.

We	can	represent	expressions,	including	those	representing	complex	deep
neural	networks,	as	computational	graphs.	We	represented	fully	connected
feedforward	models	this	way,	as	data	flowing	from	the	input,	x,	through	the
hidden	layers	to	the	output,	the	loss	function.

Computational	graphs	are	how	deep	learning	toolkits	like	TensorFlow	and
PyTorch	manage	the	structure	of	a	model	and	implement	backpropagation.
Unlike	the	rigid	calculations	earlier	in	the	chapter,	a	computational	graph	is
generic	and	capable	of	representing	all	the	architectures	used	in	deep	learning.

As	you	peruse	the	deep	learning	literature	and	begin	to	work	with	specific
toolkits,	you	will	run	across	two	different	approaches	to	using	computational
graphs.	The	first	generates	the	graph	dynamically	when	data	is	available.
PyTorch	uses	this	method,	called	symbol-to-number.	TensorFlow	uses	the
second	method,	symbol-to-symbol,	to	build	a	static	computational	graph	ahead	of
time.	Both	approaches	implement	graphs,	and	both	can	automatically	calculate
the	derivatives	needed	for	backpropagation.

TensorFlow	generates	the	derivatives	it	needs	for	backpropagation	in	much
the	same	way	we	did	in	the	previous	section.	Like	addition,	each	operation
knows	how	to	create	the	derivative	of	its	outputs	with	respect	to	its	inputs.	That,
along	with	the	chain	rule,	is	all	that’s	needed	to	implement	backpropagation.
Exactly	how	the	graph	is	traversed	depends	on	the	graph	evaluation	engine	and
the	specific	model	architecture,	but	the	graph	is	traversed	as	needed	for	both	the
forward	and	backward	passes.	Note	that	because	the	computational	graph	breaks
expressions	into	smaller	operations,	each	of	which	knows	how	to	process
gradients	during	the	backward	step	(as	we	did	above	for	ActivationLayer	and
FullyConnectedLayer),	it’s	possible	to	use	custom	functions	in	layers	without	working
through	the	derivatives.	The	graph	engine	does	it	for	you,	as	long	as	you	use
primitive	operations	the	engine	already	supports.

Let’s	walk	through	the	forward	and	backward	passes	of	a	computational
graph.	This	example	comes	from	the	2015	paper	“TensorFlow:	Large-Scale
Machine	Learning	on	Heterogeneous	Distributed	Systems”



(https://arxiv.org/pdf/1603.04467.pdf).
A	hidden	layer	in	a	fully	connected	model	is	expressed	as

y	=	σ(Wx	+	b)

for	weight	matrix	W,	bias	vector	b,	input	x,	and	output	y.
Figure	10-4	shows	the	same	equation	as	a	computational	graph.

Figure	10-4:	The	computational	graphs	representing	the	forward	and	backward	passes	through	one	layer
of	a	feedforward	neural	network

Figure	10-4	presents	two	versions.	The	top	of	the	figure	shows	the	forward
pass,	where	data	flows	from	x,	W,	and	b	to	produce	the	output.	Notice	how	the
arrows	lead	left	to	right.

Note	the	sources	are	tensors,	here	either	vectors	or	matrices.	The	outputs	of
operations	are	also	tensors.	The	tensors	flow	through	the	graph,	hence	the	name
TensorFlow.	Figure	10-4	represents	matrix	multiplication	as	@,	the	NumPy
matrix	multiplication	operator.	The	activation	function	is	σ.

For	the	backward	pass,	the	sequence	of	derivatives	begins	with	∂y/∂y	=	1	and
flows	back	through	the	graph	from	operator	output	to	inputs.	If	there	is	more
than	one	input,	there	is	more	than	one	output	derivative.	In	practice,	the	graph
evaluation	engine	processes	the	proper	set	of	operators	in	the	proper	order.	Each
operator	has	its	needed	input	derivatives	available	when	it’s	that	operator’s	turn
to	be	processed.

Figure	10-4	uses	∂	before	an	operator	to	indicate	the	derivatives	the	operator
generates.	For	example,	the	addition	operator	(∂+)	produces	two	outputs	because
there	are	two	inputs,	Wx	and	b.	The	same	is	true	for	matrix	multiplication	(∂@).
The	derivative	of	the	activation	function	is	shown	as	σ′.

Notice	that	arrows	run	from	W	and	x	in	the	forward	pass	to	the	derivative	of

https://arxiv.org/pdf/1603.04467.pdf


the	matrix	multiplication	operator	in	the	backward	pass.	Both	W	and	x	are
necessary	to	calculate	∂y/∂W	and	∂y/∂x—see	Equation	10.13	and	Equation
10.11,	respectively.	There	is	no	arrow	from	b	to	the	matrix	multiplication
operator	because	∂y/∂b	does	not	depend	on	b—see	Equation	10.12.	If	a	layer
were	below	what	is	shown	in	Figure	10-4,	the	∂y/∂x	output	from	the	matrix
multiplication	operator	would	become	the	input	for	the	backward	pass	through
that	layer,	and	so	on.

The	power	of	computational	graphs	makes	modern	deep	learning	toolkits
highly	general	and	supports	almost	any	network	type	and	architecture,	without
burdening	the	user	with	detailed	and	highly	tedious	gradient	calculations.	As	you
continue	to	explore	deep	learning,	do	appreciate	what	the	toolkits	make	possible
with	only	a	few	lines	of	code.

Summary
This	chapter	introduced	backpropagation,	one	of	the	two	pieces	needed	to	make
deep	learning	practical.	First,	we	worked	through	calculating	the	necessary
derivatives	by	hand	for	a	tiny	network	and	saw	how	laborious	a	process	it	was.
However,	we	were	able	to	train	the	tiny	network	successfully.

Next,	we	used	our	matrix	calculus	knowledge	from	Chapter	8	to	find	the
equations	for	multilayer	fully	connected	networks	and	created	a	simple	toolkit	in
the	same	vein	as	toolkits	like	Keras.	With	the	toolkit,	we	successfully	trained	a
model	to	high	accuracy	using	the	MNIST	dataset.	While	effective	and	general	in
terms	of	the	number	of	hidden	layers	and	their	sizes,	the	toolkit	was	restricted	to
fully	connected	models.

We	ended	the	chapter	with	a	cursory	look	at	how	modern	deep	learning
toolkits	like	TensorFlow	implement	models	and	automate	backpropagation.	The
computational	graph	enables	arbitrary	combinations	of	primitive	operations,
each	of	which	can	pass	gradients	backward	as	necessary,	thereby	allowing	the
complex	model	architectures	we	find	in	deep	learning.

The	second	half	of	training	a	deep	model	is	gradient	descent,	which	puts	the
gradients	calculated	by	backpropagation	to	work.	Let’s	now	turn	our	attention
that	way.



11
GRADIENT	DESCENT

In	this	final	chapter,	we’ll	slow	down	a	bit	and	consider	gradient	descent	afresh.
We’ll	begin	by	reviewing	the	idea	of	gradient	descent	using	illustrations,
discussing	what	it	is	and	how	it	works.	Next,	we’ll	explore	the	meaning	of
stochastic	in	stochastic	gradient	descent.	Gradient	descent	is	a	simple	algorithm
that	invites	tweaking,	so	after	we	explore	stochastic	gradient	descent,	we’ll
consider	a	useful	and	commonly	used	tweak:	momentum.	We’ll	conclude	the
chapter	by	discussing	more	advanced,	adaptive	gradient	descent	algorithms,
specifically	RMSprop,	Adagrad,	and	Adam.

This	is	a	math	book,	but	gradient	descent	is	very	much	applied	math,	so	we’ll
learn	by	experimentation.	The	equations	are	straightforward,	and	the	math	we
saw	in	previous	chapters	is	relevant	as	background.	Therefore,	consider	this
chapter	an	opportunity	to	apply	what	we’ve	learned	so	far.

The	Basic	Idea
We’ve	encountered	gradient	descent	several	times	already.	We	know	the	form	of
the	basic	gradient	descent	update	equations	from	Equation	10.14:

Here,	ΔW	and	Δb	are	errors	based	on	the	partial	derivatives	of	the	weights	and



biases,	respectively;	η	(eta)	is	a	step	size	or	learning	rate,	a	value	we	use	to
adjust	how	we	move.

Equation	11.1	isn’t	specific	to	machine	learning.	We	can	use	the	same	form
to	implement	gradient	descent	on	arbitrary	functions.	Let’s	discuss	gradient
descent	using	1D	and	2D	examples	to	lay	a	foundation	for	how	it	operates.	We’ll
use	an	unmodified	form	of	gradient	descent	known	as	vanilla	gradient	descent.

Gradient	Descent	in	One	Dimension
Let’s	begin	with	a	scalar	function	of	x:

Equation	11.2	is	a	parabola	facing	upward.	Therefore,	it	has	a	minimum.	Let’s
find	the	minimum	analytically	by	setting	the	derivative	to	zero	and	solving	for	x:

The	minimum	of	the	parabola	is	at	x	=	1.	Now,	let’s	instead	use	gradient
descent	to	find	the	minimum	of	Equation	11.2.	How	should	we	begin?

First,	we	need	to	write	the	proper	update	equation,	the	form	of	Equation	11.1
that	applies	in	this	case.	We	need	the	gradient,	which	for	a	1D	function	is	simply
the	derivative,	f′(x)	=	12x	−	12.	With	the	derivative,	gradient	descent	becomes

Notice	that	we	subtract	η	(12x	−	12).	This	is	why	the	algorithm	is	called
gradient	descent.	Recall	that	the	gradient	points	in	the	direction	of	maximum
change	in	the	function’s	value.	We’re	interested	in	minimizing	the	function,	not
maximizing	it,	so	we	move	in	the	direction	opposite	to	the	gradient	toward
smaller	function	values;	therefore,	we	subtract.

Equation	11.3	is	one	gradient	descent	step.	It	moves	from	an	initial	position,
x,	to	a	new	position	based	on	the	value	of	the	slope	at	the	current	position.	Again
η,	the	learning	rate,	governs	how	far	we	move.



Now	that	we	have	the	equation,	let’s	implement	gradient	descent.	We’ll	plot
Equation	11.2,	pick	a	starting	position,	say	x	=	−0.9,	and	iterate	Equation	11.3,
plotting	the	function	value	at	each	new	position	of	x.	If	we	do	this,	we	should	see
a	series	of	points	on	the	function	that	move	ever	closer	to	the	minimum	position
at	x	=	1.	Let’s	write	some	code.

First,	we	implement	Equation	11.2	and	its	derivative:

def	f(x):
				return	6*x**2	-	12*x	+	3
def	d(x):
				return	12*x	-	12

Next,	we	plot	the	function,	and	then	we	iterate	Equation	11.3,	plotting	the	new
pair,	(x,	f(x)),	each	time:

			import	numpy	as	np
			import	matplotlib.pylab	as	plt

❶	x	=	np.linspace(-1,3,1000)
			plt.plot(x,f(x))

❷	x	=	-0.9
			eta	=	0.03
❸	for	i	in	range(15):
						plt.plot(x,	f(x),	marker='o',	color='r')
				❹	x	=	x	-	eta	*	d(x)

Let’s	walk	through	the	code.	After	importing	NumPy	and	Matplotlib,	we	plot
Equation	11.2	❶.	Next,	we	set	our	initial	x	position	❷	and	take	15	gradient
descent	steps	❸.	We	plot	before	stepping,	so	we	see	the	initial	x	but	do	not	plot
the	last	step,	which	is	fine	in	this	case.

The	final	line	❹	is	key.	It	implements	Equation	11.3.	We	update	the	current
x	position	by	multiplying	the	derivative’s	value	at	x	by	η	=	0.03	as	the	step	size.
The	code	above	is	in	the	file	gd_1d.py.	If	we	run	it,	we	get	Figure	11-1.



Figure	11-1:	Gradient	descent	in	one	dimension	with	small	steps	(η	=	0.03)

Our	initial	position,	which	we	can	think	of	as	an	initial	guess	at	the	location
of	the	minimum,	is	x	=	−0.9.	Clearly,	this	isn’t	the	minimum.	As	we	take
gradient	descent	steps,	we	move	successively	closer	to	the	minimum,	as	the
sequence	of	circles	moving	toward	it	shows.

Notice	two	things	here.	First,	we	do	get	closer	and	closer	to	the	minimum.
After	14	steps,	we	are,	for	all	intents	and	purposes,	at	the	minimum:	x	=
0.997648.	Second,	each	gradient	descent	step	leads	to	smaller	and	smaller
changes	in	x.	The	learning	rate	is	constant	at	η	=	0.03,	so	the	source	of	the
smaller	updates	to	x	must	be	smaller	and	smaller	values	of	the	derivative	at	each
x	position.	This	makes	sense	if	we	think	about	it.	As	we	approach	the	minimum
position,	the	derivative	gets	smaller	and	smaller,	until	it	reaches	zero	at	the
minimum,	so	the	update	using	the	derivative	gets	successively	smaller	as	well.

We	selected	the	step	size	for	Figure	11-1	to	move	smoothly	toward	the
minimum	of	the	parabola.	What	if	we	change	the	step	size?	Further	along	in



gd_1d.py,	the	code	repeats	the	steps	above,	starting	at	x	=	0.75	and	setting	η	=
0.15	to	take	steps	that	are	five	times	larger	than	those	plotted	in	Figure	11-1.	The
result	is	Figure	11-2.

Figure	11-2:	Gradient	descent	in	one	dimension	with	large	steps	(η	=	0.15)

In	this	case,	the	steps	overshoot	the	minimum.	The	new	x	positions	oscillate,
bouncing	back	and	forth	over	the	true	minimum	position.	The	dashed	lines
connect	successive	x	positions.	The	overall	search	still	approaches	the	minimum
but	takes	longer	to	reach	it,	as	the	large	step	size	makes	each	update	to	x	tend	to
move	past	the	minimum.

Small	gradient	descent	steps	move	short	distances	along	the	function,
whereas	large	steps	move	large	distances.	If	the	learning	rate	is	too	small,	many
gradient	descent	steps	are	necessary.	If	the	learning	rate	is	too	large,	the	search
overshoots	and	oscillates	around	the	minimum	position.	The	proper	learning	rate
is	not	immediately	obvious,	so	intuition	and	experience	come	into	play	when



selecting	it.	Additionally,	these	examples	fixed	η.	There’s	no	reason	why	η	has
to	be	a	constant.	In	many	deep	learning	applications,	the	learning	rate	is	not
constant	but	evolves	as	training	progresses,	effectively	making	η	a	function	of
the	number	of	gradient	descent	steps	taken.

Gradient	Descent	in	Two	Dimensions
Gradient	descent	in	one	dimension	is	straightforward	enough.	Let’s	move	to	two
dimensions	to	increase	our	intuition	about	the	algorithm.	The	code	referenced
below	is	in	the	file	gd_2d.py.	We’ll	first	consider	the	case	where	the	function	has
a	single	minimum,	then	look	at	cases	with	multiple	minima.

Gradient	Descent	with	a	Single	Minimum
To	work	in	two	dimensions,	we	need	a	scalar	function	of	a	vector,	f(x)	=	f(x,	y),
where,	to	make	it	easier	to	follow,	we	separate	the	vector	into	its	components,	x
=	(x,	y).

The	first	function	we’ll	work	with	is

f(x,	y)	=	6x2	+	9y2	−	12x	−	14y	+	3

To	implement	gradient	descent,	we	need	the	partial	derivatives	as	well:

Our	update	equations	become

In	code,	we	define	the	function	and	partial	derivatives:

def	f(x,y):



				return	6*x**2	+	9*y**2	-	12*x	-	14*y	+	3
def	dx(x):
				return	12*x	-	12
def	dy(y):
				return	18*y	-	14

Since	the	partial	derivatives	are	independent	of	the	other	variable,	we	get
away	with	passing	only	x	or	y.	We’ll	see	an	example	later	in	this	section	where
that’s	not	the	case.

Gradient	descent	follows	the	same	pattern	as	before:	select	an	initial	position,
this	time	a	vector,	iterate	for	some	number	of	steps,	and	plot	the	path.	The
function	is	2D,	so	we	first	plot	it	using	contours,	as	shown	next.

N	=	100
x,y	=	np.meshgrid(np.linspace(-1,3,N),	np.linspace(-1,3,N))
z	=	f(x,y)
plt.contourf(x,y,z,10,	cmap="Greys")
plt.contour(x,y,z,10,	colors='k',	linewidths=1)
plt.plot([0,0],[-1,3],color='k',linewidth=1)
plt.plot([-1,3],[0,0],color='k',linewidth=1)
plt.plot(1,0.7777778,color='k',marker='+')

This	code	requires	some	explanation.	To	plot	contours,	we	need	a
representation	of	the	function	over	a	grid	of	(x,	y)	pairs.	To	generate	the	grid,	we
use	NumPy,	specifically	np.meshgrid.	The	arguments	to	np.meshgrid	are	the	x	and	y
points,	here	provided	by	np.linspace,	which	itself	generates	a	vector	from	−1	to	3	of
N	=	100	evenly	spaced	values.	The	np.meshgrid	function	returns	two	100	×	100
matrices.	The	first	contains	the	x	values	over	the	given	range,	and	the	second
contains	the	y	values.	All	possible	(x,	y)	pairs	are	represented	in	the	return	value
to	form	a	grid	of	points	covering	the	region	of	−1	.	.	.	3	in	both	x	and	y.	Passing
these	points	to	the	function	then	returns	z,	a	100	×	100	matrix	of	the	function
value	at	each	(x,	y)	pair.

We	could	plot	the	function	in	3D,	but	that’s	difficult	to	see	and	unnecessary
in	this	case.	Instead,	we’ll	use	the	function	values	in	x,	y,	and	z	to	generate
contour	plots.	Contour	plots	show	3D	information	as	a	series	of	lines	of	equal	z
value.	Think	of	lines	around	a	hill	on	a	topographic	map,	where	each	line	is	at
the	same	altitude.	As	the	hill	gets	higher,	the	lines	enclose	successively	smaller
regions.

Contour	plots	come	in	two	varieties,	as	either	lines	of	equal	function	value	or
shading	over	ranges	of	the	function.	We’ll	plot	both	varieties	using	a	grayscale
map.	That’s	the	net	result	of	calling	Matplotlib’s	plt.contourf	and	plt.contour



functions.	The	remaining	plt.plot	calls	show	the	axes	and	mark	the	function
minimum	with	a	plus	sign.	The	contour	plots	are	such	that	lighter	shades	imply
lower	function	values.

We’re	now	ready	to	plot	the	sequence	of	gradient	descent	steps.	We’ll	plot
each	position	in	the	sequence	and	connect	them	with	a	dashed	line	to	make	the
path	clear	(see	Listing	11-1).	In	code,	that’s

x	=	xold	=	-0.5
y	=	yold	=	2.9
for	i	in	range(12):
				plt.plot([xold,x],[yold,y],	marker='o',	linestyle='dotted',	color='k')
				xold	=	x
				yold	=	y
				x	=	x	-	0.02	*	dx(x)
				y	=	y	-	0.02	*	dy(y)

Listing	11-1:	Gradient	descent	in	two	dimensions

We	begin	at	(x,	y)	=	(−0.5,	2.9)	and	take	12	gradient	descent	steps.	To
connect	the	last	position	to	the	new	position	using	a	dashed	line,	we	track	both
the	current	position	in	x	and	y	and	the	previous	position,	(xold,	yold).	The	gradient
descent	step	updates	both	x	and	y	using	η	=	0.02	and	calling	the	respective	partial
derivative	functions,	dx	and	dy.

Figure	11-3	shows	the	gradient	descent	path	that	Listing	11-1	follows
(circles)	along	with	two	other	paths	starting	at	(1.5,	−0.8)	(squares)	and	(2.7,	2.3)
(triangles).



Figure	11-3:	Gradient	descent	in	two	dimensions	for	small	steps

All	three	gradient	descent	paths	converge	toward	the	minimum	of	the
function.	This	isn’t	surprising,	as	the	function	has	only	one	minimum.	If	the
function	has	a	single	minimum,	then	gradient	descent	will	eventually	find	it.	If
the	step	size	is	too	small,	many	steps	might	be	necessary,	but	they	will	ultimately
converge	on	the	minimum.	If	the	step	size	is	too	large,	gradient	descent	may
oscillate	around	the	minimum	but	continually	step	over	it.

Let’s	change	our	function	a	bit	to	stretch	it	in	the	x	direction	relative	to	the	y
direction:

f(x,	y)	=	6x2	+	40y2	−	12x	−	30y	+	3

This	function	has	partials	∂f/∂x	=	12x	−	12	and	∂f/∂y	=	80y	−	30.
Additionally,	let’s	pick	two	starting	locations,	(−0.5,	2.3)	and	(2.3,	2.3),	and

generate	a	sequence	of	gradient	descent	steps	with	η	=	0.02	and	η	=	0.01,



respectively.	Figure	11-4	shows	the	resulting	paths.

Figure	11-4:	Gradient	descent	in	2D	with	larger	steps	and	a	slightly	different	function

Consider	the	η	=	0.02	(circle)	path	first.	The	new	function	is	like	a	canyon,
narrow	in	y	but	long	in	x.	The	larger	step	size	oscillates	up	and	down	in	y	as	it
moves	toward	the	minimum	in	x.	Bouncing	off	the	canyon	walls	aside,	we	still
find	the	minimum.

Now,	take	a	look	at	the	η	=	0.01	(square)	path.	It	quickly	falls	into	the
canyon	and	then	moves	slowly	over	the	flat	region	along	the	canyon	floor
toward	the	minimum	position.	The	component	of	the	vector	gradient	(the	x	and	y
partial	derivative	values)	along	the	x	direction	is	small	in	the	canyon,	so	motion
along	x	is	proportionately	slow.	There	is	no	motion	in	the	y	direction—the
canyon	is	steep,	and	the	relatively	small	learning	rate	has	already	located	the
canyon	floor,	where	the	gradient	is	primarily	along	x.

What’s	the	lesson	here?	Again,	the	step	size	matters.	However,	the	shape	of



the	function	matters	even	more.	The	minimum	of	the	function	lies	at	the	bottom
of	a	long,	narrow	canyon.	The	gradient	along	the	canyon	is	tiny;	the	canyon	floor
is	flat	in	the	x	direction,	so	motion	is	slow	because	it	depends	on	the	gradient
value.	We	frequently	encounter	this	effect	in	deep	learning:	if	the	gradient	is
small,	learning	is	slow.	This	is	why	the	rectified	linear	unit	has	come	to
dominate	deep	learning;	the	gradient	is	a	constant	one	for	positive	inputs.	For	a
sigmoid	or	hyperbolic	tangent,	the	gradient	approaches	zero	when	inputs	are	far
from	zero.

Gradient	Descent	with	Multiple	Minima
The	functions	we’ve	examined	so	far	have	a	single	minimum	value.	What	if	that
isn’t	the	case?	Let’s	see	what	happens	to	gradient	descent	when	the	function	has
more	than	one	minimum.	Consider	this	function:

Equation	11.4	is	the	sum	of	two	inverted	Gaussians,	one	with	a	minimum	value
of	−2	at	(−1,	1)	and	the	other	with	a	minimum	of	−1	at	(1,	−1).	If	gradient
descent	is	to	find	the	global	minimum,	it	should	find	it	at	(−1,	1).	The	code	for
this	example	is	in	gd_multiple.py.

The	partial	derivatives	are

which	translates	into	the	following	code:

def	f(x,y):
				return	-2*np.exp(-0.5*((x+1)**2+(y-1)**2))	+	\
											-np.exp(-0.5*((x-1)**2+(y+1)**2))

def	dx(x,y):
				return	2*(x+1)*np.exp(-0.5*((x+1)**2+(y-1)**2))	+	\
											(x-1)*np.exp(-0.5*((x-1)**2+(y+1)**2))

def	dy(x,y):
				return	(y+1)*np.exp(-0.5*((x-1)**2+(y+1)**2))	+	\
											2*(y-1)*np.exp(-0.5*((x+1)**2+(y-1)**2))



Notice,	in	this	case,	the	partial	derivatives	do	depend	on	both	x	and	y.
The	code	for	the	gradient	descent	portion	of	gd_multiple.py	is	as	before.

Let’s	run	the	cases	in	Table	11-1.

Table	11-1:	Different	Starting	Positions	and	Number	of	Gradient	Descent	Steps	Taken

Starting	point Steps Symbol
(–1.5,1.2) 9 circle
(1.5,–1.8) 9 square
(0,0) 20 plus
(0.7,–0.2) 20 triangle
(1.5,1.5) 30 asterisk

The	Symbol	column	refers	to	the	plot	symbol	used	in	Figure	11-5.	For	all
cases,	η	=	0.4.



Figure	11-5:	Gradient	descent	for	a	function	with	two	minima

The	gradient	descent	paths	indicated	in	Figure	11-5	make	sense.	In	three	of
the	five	cases,	the	path	does	move	into	the	well	that	the	deeper	of	the	two
minima	defines—a	successful	search.	However,	for	the	triangle	and	the	square,
gradient	descent	fell	into	the	wrong	minimum.	Clearly,	how	successful	gradient
descent	is,	in	this	case,	depends	on	where	we	start	the	process.	Once	the	path
moves	downhill	to	a	deeper	position,	gradient	descent	has	no	way	to	escape
upward	to	find	a	potentially	better	minimum.

Current	thinking	is	that	the	loss	landscape	for	a	deep	learning	model	contains
many	minima.	It’s	also	currently	believed	that	in	most	cases,	the	minima	are
pretty	similar,	which	partially	explains	the	success	of	deep	learning	models—to
train	them,	you	don’t	need	to	find	the	one,	magic,	global	minimum	of	the	loss,
only	one	of	the	(probably)	many	that	are	(probably)	about	as	good	as	any	of	the
others.

I	selected	the	initial	positions	used	for	the	examples	in	this	section
intentionally	based	on	knowledge	of	the	function’s	form.	For	a	deep	learning
model,	picking	the	starting	point	means	random	initialization	of	the	weights	and
biases.	In	general,	we	don’t	know	the	form	of	the	loss	function,	so	initialization
is	a	shot	in	the	dark.	Most	of	the	time,	or	at	least	much	of	the	time,	gradient
descent	produces	a	well-performing	model.	Sometimes,	however,	it	doesn’t;	it
fails	miserably.	In	those	cases,	it’s	possible	the	initial	position	was	like	the
square	in	Figure	11-5:	it	fell	into	an	inferior	local	minimum	because	it	started	in
a	bad	place.

Now	that	we	have	a	handle	on	gradient	descent,	what	it	is,	and	how	it	works,
let’s	investigate	how	we	can	apply	it	in	deep	learning.

Stochastic	Gradient	Descent
Training	a	neural	network	is	primarily	the	act	of	minimizing	the	loss	function
while	preserving	generalizability	via	various	forms	of	regularization.	In	Chapter
10,	we	wrote	the	loss	as	L(θ;	x,	y)	for	a	vector	of	the	weights	and	biases,	θ
(theta),	and	training	instances	(x,	y),	where	x	is	the	input	vectors	and	y	is	the
known	labels.	Note	how	here,	x	is	a	stand-in	for	all	training	data,	not	just	a
single	sample.

Gradient	descent	needs	∂L/∂θ,	which	we	get	via	backpropagation.	The
expression	∂L/∂θ	is	a	concise	way	of	referring	to	all	the	individual	weight	and
bias	error	terms	backpropagation	gives	us.	We	get	∂L/∂θ	by	averaging	the	error



over	the	training	data.	This	begs	the	question:	Do	we	average	over	all	of	the
training	data	or	only	some	of	the	training	data?

Passing	all	the	training	data	through	the	model	before	taking	a	gradient
descent	step	is	called	batch	training.	At	first	blush,	batch	training	seems	sensible.
After	all,	if	our	training	set	is	a	good	sample	from	the	parent	distribution	that
generates	the	sort	of	data	our	model	intends	to	work	with,	then	why	not	use	all	of
that	sample	to	do	gradient	descent?

When	datasets	were	small,	batch	training	was	the	natural	thing	to	do.
However,	models	got	bigger,	as	did	datasets,	and	suddenly	the	computational
burden	of	passing	all	the	training	data	through	the	model	for	each	gradient
descent	step	became	too	much.	This	chapter’s	examples	already	hint	that	many
gradient	descent	steps	might	be	necessary	to	find	a	good	minimum	position,
especially	for	tiny	learning	rates.

Therefore,	practitioners	began	to	use	subsets	of	the	training	data	for	each
gradient	descent	step—the	minibatch.	Minibatch	training	was	probably	initially
viewed	as	a	compromise,	as	the	gradient	calculated	over	the	minibatch	was
“wrong”	because	it	wasn’t	based	on	the	performance	of	the	full	training	set.

Of	course,	the	difference	between	batch	and	minibatch	is	just	an	agreed-upon
fiction.	In	truth,	it’s	a	continuum	from	a	minibatch	of	one	to	a	minibatch	of	all
available	samples.	With	that	in	mind,	all	the	gradients	computed	during	network
training	are	“wrong,”	or	at	least	incomplete,	as	they	are	based	on	incomplete
knowledge	of	the	data	generator	and	the	full	set	of	data	it	could	generate.

Rather	than	a	concession,	then,	minibatch	training	is	reasonable.	The
gradient	over	a	small	minibatch	is	noisy	compared	to	that	computed	over	a	larger
minibatch,	in	the	sense	that	the	small	minibatch	gradient	is	a	coarser	estimate	of
the	“real”	gradient.	When	things	are	noisy	or	random,	the	word	stochastic	tends
to	show	up,	as	it	does	here.	Gradient	descent	with	minibatches	is	stochastic
gradient	descent	(SGD).

In	practice,	gradient	descent	using	smaller	minibatches	often	leads	to	models
that	perform	better	than	those	trained	with	larger	minibatches.	The	rationale
generally	given	is	that	the	noisy	gradient	of	the	smaller	minibatch	helps	gradient
descent	avoid	falling	into	poor	local	minima	of	the	loss	landscape.	We	saw	this
effect	in	Figure	11-5,	where	the	triangle	and	the	square	both	fell	into	the	wrong
minimum.

Again,	we	find	ourselves	strangely	fortunate.	Before,	we	were	fortunate
because	first-order	gradient	descent	succeeded	in	training	models	that	shouldn’t
train	due	to	nonlinear	loss	landscapes,	and	now	we	get	a	boost	by	intentionally
using	small	amounts	of	data	to	estimate	gradients,	thereby	skipping	a



using	small	amounts	of	data	to	estimate	gradients,	thereby	skipping	a
computational	burden	likely	to	make	the	entire	enterprise	of	deep	learning	too
cumbersome	to	implement	in	many	cases.

How	large	should	our	minibatch	be?	Minibatch	size	is	a	hyperparameter,
something	we	need	to	select	to	train	the	model,	but	is	not	part	of	the	model	itself.
The	proper	minibatch	size	is	dataset-dependent.	For	example,	in	the	extreme,	we
could	take	a	gradient	descent	step	for	each	sample,	which	sometimes	works	well.
This	case	is	often	referred	to	as	online	learning.	However,	especially	if	we	use
layers	like	batch	normalization,	we	need	a	minibatch	large	enough	to	make	the
calculated	means	and	standard	deviations	reasonable	estimates.	Again,	as	with
most	everything	else	in	deep	learning	at	present,	it’s	empirical,	and	you	need	to
both	have	intuition	and	try	many	variations	to	optimize	the	training	of	the	model.
This	is	why	people	work	on	AutoML	systems,	systems	that	seek	to	do	all	the
hyperparameter	tuning	for	you.

Another	good	question:	What	should	be	in	the	minibatch?	That	is,	what
small	subset	of	the	full	dataset	should	we	use?	Typically,	the	order	of	the
samples	in	the	training	set	is	randomized,	and	minibatches	are	pulled	from	the
set	as	successive	chunks	of	samples	until	all	samples	have	been	used.	Using	all
the	samples	in	the	dataset	defines	one	epoch,	so	the	number	of	samples	in	the
training	set	divided	by	the	minibatch	size	determines	the	number	of	minibatches
per	epoch.

Alternatively,	as	we	did	for	NN.py,	a	minibatch	might	genuinely	be	a	random
sampling	from	the	available	data.	It’s	possible	that	a	particular	training	sample	is
never	used	while	another	is	used	many	times,	but	on	the	whole,	the	majority	of
the	dataset	is	used	during	training.

Some	toolkits	train	for	a	specified	number	of	minibatches.	Both	NN.py	and
Caffe	operate	this	way.	Other	toolkits,	like	Keras	and	sklearn,	use	epochs.
Gradient	descent	steps	happen	after	a	minibatch	is	processed.	Larger
minibatches	result	in	fewer	gradient	descent	steps	per	epoch.	To	compensate,
practitioners	using	toolkits	that	use	epochs	need	to	ensure	that	the	number	of
gradient	descent	steps	increases	as	minibatch	size	increases—larger	minibatches
require	more	epochs	to	train	well.

To	recap,	deep	learning	does	not	use	full	batch	training	for	at	least	the
following	reasons:

1.	 The	computational	burden	is	too	great	to	pass	the	entire	training	set	through
the	model	for	each	gradient	descent	step.

2.	 The	gradient	computed	from	the	average	loss	over	a	minibatch	is	a	noisy



but	reasonable	estimate	of	the	true,	and	ultimately	unknowable,	gradient.

3.	 The	noisy	gradient	points	in	a	slightly	wrong	direction	in	the	loss
landscape,	thereby	possibly	avoiding	bad	minima.

4.	 Minibatch	training	simply	works	better	in	practice	for	many	datasets.

Reason	#4	should	not	be	underestimated:	many	practices	in	deep	learning	are
employed	initially	because	they	simply	work	better.	Only	later	are	they	justified
by	theory,	if	at	all.

As	we	already	implemented	SGD	in	Chapter	10	(see	NN.py),	we	won’t
reimplement	it	here,	but	in	the	next	section,	we’ll	add	momentum	to	see	how	that
affects	neural	network	training.

Momentum
Vanilla	gradient	descent	relies	solely	on	the	value	of	the	partial	derivative
multiplied	by	the	learning	rate.	If	the	loss	landscape	has	many	local	minima,
especially	if	they’re	steep,	vanilla	gradient	descent	might	fall	into	one	of	the
minima	and	be	unable	to	recover.	To	compensate,	we	can	modify	vanilla
gradient	descent	to	include	a	momentum	term,	a	term	that	uses	a	fraction	of	the
previous	step’s	update.	Including	this	momentum	in	gradient	descent	adds	inertia
to	the	algorithm’s	motion	through	the	loss	landscape,	thereby	potentially
allowing	gradient	descent	to	move	past	bad	local	minima.

Let’s	define	and	then	experiment	with	momentum	using	1D	and	2D
examples,	as	we	did	earlier.	After	that,	we’ll	update	our	NN.py	toolkit	to	use
momentum	to	see	how	that	affects	models	trained	on	more	complex	datasets.

What	Is	Momentum?
In	physics,	the	momentum	of	a	moving	object	is	defined	as	the	mass	times	the
velocity,	p	=	mv.	However,	velocity	itself	is	the	first	derivative	of	the	position,	v
=	dx/dt,	so	momentum	is	mass	times	how	fast	the	position	of	the	object	is
changing	in	time.

For	gradient	descent,	position	is	the	function	value,	and	time	is	the	argument
to	the	function.	The	velocity,	then,	is	how	fast	the	function	value	changes	with	a
change	in	the	argument,	∂f/∂x.	Therefore,	we	can	think	of	momentum	as	a	scaled
velocity	term.	In	physics,	the	scale	factor	is	the	mass.	For	gradient	descent,	the



scale	factor	is	μ	(mu),	a	number	between	zero	and	one.
If	we	call	the	gradient	including	the	momentum	term	v,	then	the	gradient

descent	update	equation	that	was

becomes

for	some	initial	velocity,	v	=	0,	and	the	“mass,”	μ.
Let’s	walk	through	Equation	11.5	to	understand	what	it	means.	The	two-step

update,	first	v	and	then	x,	makes	it	easy	to	iterate,	as	we	know	we	must	do	for
gradient	descent.	If	we	substitute	v	into	the	update	equation	for	x,	we	get

This	makes	it	clear	that	the	update	includes	the	gradient	step	we	had	previously
but	adds	back	in	a	fraction	of	the	previous	step	size.	It’s	a	fraction	because	we
restrict	μ	to	[0,	1].	If	μ	=	0,	we’re	back	to	vanilla	gradient	descent.	It	might	be
helpful	to	think	of	μ	as	a	scale	factor,	the	fraction	of	the	previous	velocity	to
keep	along	with	the	current	gradient	value.

The	momentum	term	tends	to	keep	motion	through	the	loss	landscape
heading	in	its	previous	direction.	The	value	of	μ	determines	the	strength	of	that
tendency.	Deep	learning	practitioners	typically	use	μ	=	0.9,	so	most	of	the
previous	update	direction	is	maintained	in	the	next	step,	with	the	current	gradient
providing	a	small	adjustment.	Again,	like	many	things	in	deep	learning,	this
number	was	chosen	empirically.

Newton’s	first	law	of	motion	states	that	an	object	in	motion	remains	in
motion	unless	acted	upon	by	an	outside	force.	Resistance	to	an	external	force	is
related	to	the	object’s	mass	and	is	called	inertia.	So,	we	might	also	view	the	μv
term	as	inertia,	which	might	have	been	a	better	name	for	it.

Regardless	of	the	name,	now	that	we	have	it,	let’s	see	what	it	does	to	the	1D
and	2D	examples	we	worked	through	earlier	using	vanilla	gradient	descent.



Momentum	in	1D
Let’s	modify	the	1D	and	2D	examples	above	to	use	a	momentum	term.	We’ll
start	with	the	1D	case.	The	updated	code	is	in	the	file	gd_1d_momentum.py	and
appears	here	as	Listing	11-2.

			import	matplotlib.pylab	as	plt

			def	f(x):
							return	6*x**2	-	12*x	+	3
			def	d(x):
							return	12*x	-	12

❶	m	=	['o','s','>','<','*','+','p','h','P','D']
			x	=	np.linspace(0.75,1.25,1000)
			plt.plot(x,f(x))

❷	x	=	xold	=	0.75
			eta	=	0.09
			mu	=	0.8
			v	=	0.0

			for	i	in	range(10):
				❸	plt.plot([xold,x],	[f(xold),f(x)],	marker=m[i],	linestyle='dotted',
							color='r')
							xold	=	x
							v	=	mu*v	-	eta	*	d(x)
							x	=	x	+	v

			for	i	in	range(40):
							v	=	mu*v	-	eta	*	d(x)
							x	=	x	+	v

❹	plt.plot(x,f(x),marker='X',	color='k')

Listing	11-2:	Gradient	descent	in	one	dimension	with	momentum

Listing	11-2	is	a	bit	dense,	so	let’s	parse	it	out.	First,	we	are	plotting,	so	we
include	Matplotlib.	Next,	we	define	the	function,	f(x),	and	its	derivative,	d(x),	as
we	did	before.	To	configure	plotting,	we	define	a	collection	of	markers	❶	and
then	plot	the	function	itself.	As	before,	we	begin	at	x	=	0.75	❷	and	set	the	step
size	(eta),	momentum	(mu),	and	initial	velocity	(v).

We’re	now	ready	to	iterate.	We’ll	use	two	gradient	descent	loops.	The	first
plots	each	step	❸	and	the	second	continues	gradient	descent	to	demonstrate	that
we	do	eventually	locate	the	minimum,	which	we	mark	with	an	'X'	❹.	For	each
step,	we	calculate	the	new	velocity	by	mimicking	Equation	11.5,	and	then	we



add	the	velocity	to	the	current	position	to	get	the	next	position.
Figure	11-6	shows	the	output	of	gd_1d_momentum.py.

Figure	11-6:	Gradient	descent	in	one	dimension	with	momentum

Note	that	we	intentionally	used	a	large	step	size	(η),	so	we	overshoot	the
minimum.	The	momentum	term	tends	to	overshoot	minima	as	well.	If	you
follow	the	dashed	line	and	the	sequence	of	plot	markers,	you	can	walk	through
the	first	10	gradient	descent	steps.	There	is	oscillation,	but	the	oscillation	is
damped	and	eventually	settles	at	the	minimum,	as	marked.	Adding	momentum
enhanced	the	overshoot	due	to	the	large	step	size.	However,	even	with	the
momentum	term,	which	isn’t	advantageous	here,	because	there’s	only	one
minimum,	with	enough	gradient	descent	steps,	we	find	the	minimum	in	the	end.

Momentum	in	2D
Now,	let’s	update	our	2D	example.	We’re	working	with	the	code	in	gd



_momentum.py.	Recall	that,	for	the	2D	example,	the	function	is	the	sum	of	two
inverted	Gaussians.	Including	momentum	updates	the	code	slightly,	as	shown	in
Listing	11-3:

			def	gd(x,y,	eta,mu,	steps,	marker):
							xold	=	x
							yold	=	y
				❶	vx	=	vy	=	0.0
							for	i	in	range(steps):
											plt.plot([xold,x],[yold,y],	marker=marker,
																				linestyle='dotted',	color='k')

											xold	=	x
											yold	=	y
								❷	vx	=	mu*vx	-	eta	*	dx(x,y)
											vy	=	mu*vy	-	eta	*	dy(x,y)
								❸	x	=	x	+	vx
											y	=	y	+	vy

❹	gd(	0.7,-0.2,	0.1,	0.9,	25,	'>')
			gd(	1.5,	1.5,	0.02,	0.9,	90,	'*')

Listing	11-3:	Gradient	descent	in	two	dimensions	with	momentum

Here,	we	have	the	new	function,	gd,	which	performs	gradient	descent	with
momentum	beginning	at	(x,y),	using	the	given	μ	and	η,	and	runs	for	steps
iterations.

The	initial	velocity	is	set	❶,	and	the	loop	begins.	The	velocity	update	of
Equation	11.5	becomes	vx	=	mu*vx	-	eta	*	dx(x,y)	❷,	and	the	position	update	becomes
x	=	x	+	vx	❸.	As	before,	a	line	is	plotted	between	the	last	position	and	the	current
one	to	track	motion	through	the	function	landscape.

The	code	in	gd_momentum.py	traces	the	motion	starting	at	two	of	the	points
we	used	before,	(0.7,	−0.2)	and	(1.5,	1.5)	❹.	Note	the	number	of	steps	and
learning	rate	vary	by	point	to	keep	the	plot	from	becoming	too	cluttered.	The
output	of	gd_momentum.py	is	Figure	11-7.



Figure	11-7:	Gradient	descent	in	two	dimensions	with	momentum

Compare	the	paths	in	Figure	11-7	with	those	in	Figure	11-5.	Adding
momentum	has	pushed	the	paths,	so	they	tend	to	keep	moving	in	the	same
direction.	Notice	how	the	path	beginning	at	(1.5,	1.5)	spirals	toward	the
minimum,	while	the	other	path	curves	toward	the	shallower	minimum,	passes	it,
and	backtracks	toward	it	again.

The	momentum	term	alters	the	dynamics	of	motion	through	the	function
space.	However,	it’s	not	immediately	evident	that	momentum	adds	anything
helpful.	After	all,	the	(1.5,	1.5)	starting	position	using	vanilla	gradient	descent
moved	directly	to	the	minimum	position	without	spiraling.

Let’s	add	momentum	to	our	NN.py	toolkit	and	see	if	it	buys	us	anything
when	training	real	neural	networks.

Training	Models	with	Momentum



To	support	momentum	in	NN.py,	we	need	to	tweak	the	FullyConnectedLayer	method
in	two	places.	First,	as	shown	in	Listing	11-4,	we	modify	the	constructor	to
allow	a	momentum	keyword:

def	__init__(self,	input_size,	output_size,	momentum=0.0):
				self.delta_w	=	np.zeros((input_size,	output_size))
				self.delta_b	=	np.zeros((1,output_size))
				self.passes	=	0
				self.weights	=	np.random.rand(input_size,	output_size)	-	0.5
				self.bias	=	np.random.rand(1,	output_size)	-	0.5
	❶	self.vw	=	np.zeros((input_size,	output_size))
				self.vb	=	np.zeros((1,	output_size))
				self.momentum	=	momentum

Listing	11-4:	Adding	the	momentum	keyword

Here,	we	add	a	momentum	keyword,	with	a	default	of	zero,	into	the	argument	list.
Then,	we	define	initial	velocities	for	the	weights	(vw)	and	biases	(vb)	❶.	These
are	matrices	of	the	proper	shape	initialized	to	zero.	We	also	keep	the	momentum
argument	for	later	use.

The	second	modification	is	to	the	step	method,	as	Listing	11-5	shows:

def	step(self,	eta):
	❶	self.vw	=	self.momentum	*	self.vw	-	eta	*	self.delta_w	/	self.passes
				self.vb	=	self.momentum	*	self.vb	-	eta	*	self.delta_b	/	self.passes
	❷	self.weights	=	self.weights	+	self.vw
				self.bias	=	self.bias	+	self.vb
				self.delta_w	=	np.zeros(self.weights.shape)
				self.delta_b	=	np.zeros(self.bias.shape)
				self.passes	=	0

Listing	11-5:	Updating	the	step	to	include	momentum

We	implement	Equation	11.5,	first	for	the	weights	❶,	then	for	the	biases	in	the
line	after.	We	multiply	the	momentum	(μ)	by	the	previous	velocity,	then	subtract
the	average	error	over	the	minibatch,	multiplied	by	the	learning	rate.	We	then
move	the	weights	and	biases	by	adding	the	velocity	❷.	That’s	all	we	need	to	do
to	incorporate	momentum.	Then,	to	use	it,	we	add	the	momentum	keyword	to
each	fully	connected	layer	when	building	the	network,	as	shown	in	Listing	11-6:

net	=	Network()
net.add(FullyConnectedLayer(14*14,	100,	momentum=0.9))
net.add(ActivationLayer())
net.add(FullyConnectedLayer(100,	50,	momentum=0.9))
net.add(ActivationLayer())
net.add(FullyConnectedLayer(50,	10,	momentum=0.9))



net.add(FullyConnectedLayer(50,	10,	momentum=0.9))
net.add(ActivationLayer())

Listing	11-6:	Specifying	momentum	when	building	the	network

Adding	momentum	per	layer	opens	up	the	possibility	of	using	layer-specific
momentum	values.	While	I’m	unaware	of	any	research	doing	so,	it	seems	a
fairly	obvious	thing	to	try,	so	by	now,	someone	has	likely	experimented	with	it.
For	our	purposes,	we’ll	set	the	momentum	of	all	layers	to	0.9	and	move	on.

How	should	we	test	our	new	momentum?	We	could	use	the	MNIST	dataset
we	used	above,	but	it’s	not	a	good	candidate,	because	it’s	too	easy.	Even	a
simple	fully	connected	network	achieves	better	than	97	percent	accuracy.
Therefore,	we’ll	replace	the	MNIST	digits	dataset	with	another,	similar	dataset
that’s	known	to	be	more	of	a	challenge:	the	Fashion-MNIST	dataset.	(See
“Fashion-MNIST:	A	Novel	Image	Dataset	for	Benchmarking	Machine	Learning
Algorithms”	by	Han	Xiao	et	al.,	arXiv:1708.07747	[2017].)

The	Fashion-MNIST	dataset	(FMNIST)	is	a	drop-in	replacement	for	the
existing	MNIST	dataset.	It	contains	images	from	10	classes	of	clothing,	all
28×28-pixel	grayscale.	For	our	purposes,	we’ll	do	as	we	did	for	MNIST	and
reduce	the	28×28-pixel	images	to	14	×14	pixels.	The	images	are	in	the	dataset
directory	as	NumPy	arrays.	Let’s	train	a	model	using	them.	The	code	for	the
model	is	similar	to	that	of	Listing	10-7,	except	in	Listing	11-7	we	replace	the
MNIST	dataset	with	FMNIST:

x_train	=	np.load("fmnist_train_images_small.npy")/255
x_test	=	np.load("fmnist_test_images_small.npy")/255
y_train	=	np.load("fmnist_train_labels_vector.npy")
y_test	=	np.load("fmnist_test_labels.npy")

Listing	11-7:	Loading	the	Fashion-MNIST	dataset

We	also	include	code	to	calculate	the	Matthews	correlation	coefficient	(MCC)
on	the	test	data.	We	first	encountered	the	MCC	in	Chapter	4,	where	we	learned
that	it’s	a	better	measure	of	a	model’s	performance	than	the	accuracy	is.	The
code	to	run	is	in	fmnist.py.	Taking	around	18	minutes	on	an	older	Intel	i5	box,
one	run	of	it	produced

[[866			1		14		28			8			1		68			0		14			0]
	[		5	958			2		25			5			0			3			0			2			0]
	[	20			1	790		14	126			0		44			1			3			1]
	[	29		21		15	863		46			1		20			0			5			0]
	[		0			0		91		22	849			1		32			0			5			0]
	[		0			0			0			1			0	960			0		22			2		15]



	[161			2	111		38	115			0	556			0		17			0]
	[		0			0			0			0			0		29			0	942			0		29]
	[		1			0			7			5			6			2			2			4	973			0]
	[		0			0			0			0			0			6			0		29			1	964]]

accuracy	=	0.8721000
MCC	=	0.8584048

The	confusion	matrix,	still	10	×	10	because	of	the	10	classes	in	FMNIST,	is
quite	noisy	compared	to	the	very	clean	confusion	matrix	we	saw	with	MNIST
proper.	This	is	a	challenging	dataset	for	fully	connected	models.	Recall	that	the
MCC	is	a	measure	where	the	closer	it	is	to	one,	the	better	the	model.

The	confusion	matrix	above	is	for	a	model	trained	without	momentum.	The
learning	rate	was	1.0,	and	it	was	trained	for	40,000	minibatches	of	64	samples.
What	happens	if	we	add	momentum	of	0.9	to	each	fully	connected	layer	and
reduce	the	learning	rate	to	0.2?	When	we	add	momentum,	it	makes	sense	to
reduce	the	learning	rate	so	we	aren’t	taking	large	steps	compounded	by	the
momentum	already	moving	in	a	particular	direction.	Do	explore	what	happens	if
you	run	fmnist.py	with	a	learning	rate	of	0.2	and	no	momentum.

The	version	of	the	code	with	momentum	is	in	fmnist_momentum.py.	After
about	20	minutes,	one	run	of	this	code	produced

[[766			5		14		61			2			1	143			0			8			0]
	[		1	958			2		30			3			0			6			0			0			0]
	[	12			0	794		16		98			0		80			0			0			0]
	[		8		11		13	917		21			0		27			0			3			0]
	[		0			0		84		44	798			0		71			0			3			0]
	[		0			0			0			1			0	938			0		31			1			29]
	[	76			2		87		56		60			0	714			0			5			0]
	[		0			0			0			0			0		11			0	963			0		26]
	[		1			1			6			8			5			1		10			4	964			0]
	[		0			0			0			0			0			6			0		33			0	961]]

accuracy	=	0.8773000
MCC	=	0.8638721

giving	us	a	slightly	higher	MCC.	Does	that	mean	momentum	helped?	Maybe.	As
we	well	understand	by	now,	training	neural	networks	is	a	stochastic	process.	So,
we	can’t	rely	on	results	from	a	single	training	of	the	models.	We	need	to	train
the	models	many	times	and	perform	statistical	tests	on	the	results.	Excellent!
This	gives	us	a	chance	to	put	the	hypothesis	testing	knowledge	we	gained	in
Chapter	4	to	good	use.

Instead	of	running	fmnist.py	and	fmnist_momentum.py	one	time	each,	let’s



run	them	22	times	each.	This	takes	the	better	part	of	a	day	on	my	old	Intel	i5
system,	but	patience	is	a	virtue.	The	net	result	is	22	MCC	values	for	the	model
with	momentum	and	22	for	the	model	without	momentum.	There’s	nothing
magical	about	22	samples,	but	we	intend	to	use	the	Mann-Whitney	U	test,	and
the	rule	of	thumb	for	that	test	is	to	have	at	least	20	samples	in	each	dataset.

Figure	11-8	displays	histograms	of	the	results.

Figure	11-8:	Histograms	showing	the	distribution	of	MCC	for	models	trained	with	momentum	(light	gray)
and	without	(dark	gray)

The	darker	gray	bars	are	the	no-momentum	MCC	values,	and	the	lighter	bars
are	those	with	momentum.	Visually,	the	two	are	largely	distinct	from	each	other.
The	code	producing	Figure	11-8	is	in	the	file	fmnist_analyze.py.	Do	take	a	look
at	the	code.	It	uses	SciPy’s	ttest_ind	and	mannwhitneyu	along	with	the	implementation
we	gave	in	Chapter	4	of	Cohen’s	d	to	calculate	the	effect	size.	The	MCC	values
themselves	are	in	the	NumPy	files	listed	in	the	code.



Along	with	the	graph,	fmnist_analyze.py	produces	the	following	output:

no	momentum:	0.85778	+/-	0.00056
momentum			:	0.86413	+/-	0.00075

t-test	momentum	vs	no	(t,p):	(6.77398299,	0.00000003)
Mann-Whitney	U													:	(41.00000000,	0.00000126)
Cohen's	d																		:	2.04243

where	the	top	two	lines	are	the	mean	and	the	standard	error	of	the	mean.	The	t-
test	results	are	(t,	p),	the	t-test	statistic	and	associated	p-value.	Similarly,	the
Mann-Whitney	U	test	results	are	(U,	p),	the	U	statistic	and	its	p-value.	Recall
how	the	Mann-Whitney	U	test	is	a	nonparametric	test	assuming	nothing	about
the	shape	of	the	distribution	of	MCC	values.	The	t-test	assumes	they	are
normally	distributed.	As	we	have	only	22	samples	each,	we	really	can’t	make
any	definitive	statement	about	whether	the	results	are	normally	distributed;	the
histograms	don’t	look	much	like	Gaussian	curves.	That’s	why	we	included	the
Mann-Whitney	U	test	results.

A	glance	at	the	respective	p-values	tells	us	that	the	difference	in	means
between	the	MCC	values	with	and	without	momentum	is	highly	statistically
significant	in	favor	of	the	with-momentum	results.	The	t-value	is	positive,	and
the	with-momentum	result	was	the	first	argument.	What	of	Cohen’s	d-value?	It’s
a	bit	above	2.0,	indicating	a	(very)	large	effect	size.

Can	we	now	say	that	momentum	helps	in	this	case?	Probably.	It	produced
better	performing	models	given	the	hyperparameters	we	used.	The	stochastic
nature	of	training	neural	networks	makes	it	possible	that	we	could	tweak	the
hyperparameters	of	both	models	to	eliminate	the	difference	we	see	in	the	data	we
have.	The	architecture	between	the	two	is	fixed,	but	nothing	says	the	learning
rate	and	minibatch	size	are	optimized	for	either	model.

A	punctilious	researcher	would	feel	compelled	to	run	an	optimization
process	over	the	hyperparameters	and,	once	satisfied	that	they’d	found	the	very
best	model	for	both	approaches,	make	a	more	definite	statement	after	repeating
the	experiment.	We,	thankfully,	are	not	punctilious	researchers.	Instead,	we’ll
use	the	evidence	we	have,	along	with	the	several	decades	of	wisdom	acquired	by
the	world’s	machine	learning	researchers	regarding	the	utility	of	momentum	in
gradient	descent,	to	state	that,	yes,	momentum	helps	models	learn,	and	you
should	use	it	in	most	cases.

However,	the	normality	question	is	begging	for	further	investigation.	We	are,
after	all,	seeking	to	improve	our	mathematical	and	practical	intuition	regarding



deep	learning.	Therefore,	let’s	train	the	with-momentum	model	for	FMNIST,	not
22	times	but	100	times.	As	a	concession,	we’ll	reduce	the	number	of	minibatches
from	40,000	to	10,000.	Still,	expect	to	spend	the	better	part	of	a	day	waiting	for
the	program	to	finish.	The	code,	which	we	won’t	walk	through	here,	is	in
fmnist_repeat.py.

Figure	11-9	presents	a	histogram	of	the	results.
Clearly,	this	distribution	does	not	look	at	all	like	a	normal	curve.	The	output

of	fmnist_repeat.py	includes	the	result	of	SciPy’s	normaltest	function.	This
function	performs	a	statistical	test	on	a	set	of	data	under	the	null	hypothesis	that
the	data	is	normally	distributed.	Therefore,	a	p-value	below,	say,	0.05	or	0.01,
indicates	data	that	is	not	normally	distributed.	Our	p-value	is	virtually	zero.

What	to	make	of	Figure	11-9?	First,	as	the	results	are	certainly	not	normal,
we	aren’t	justified	in	using	a	t-test.	However,	we	also	used	the	nonparametric
Mann-Whitney	U	test	and	found	highly	statistically	significant	results,	so	our
claims	above	are	still	valid.	Second,	the	long	tail	of	the	distribution	in	Figure	11-
9	is	to	the	left.	We	might	even	make	an	argument	that	the	result	is	possibly
bimodal:	that	there	are	two	peaks,	one	near	0.83	and	the	other,	smaller	one	near
an	MCC	of	0.75.



Figure	11-9:	Distribution	of	MCC	values	for	100	trainings	of	the	FMNIST	model

Most	models	trained	to	a	relatively	consistent	level	of	performance,	with	an
MCC	near	0.83.	However,	the	long	tail	indicates	that	when	the	model	wasn’t
reasonably	good,	it	was	just	plain	horrid.

Intuitively,	Figure	11-9	seems	reasonable	to	me.	We	know	stochastic
gradient	descent	is	susceptible	to	improper	initialization,	and	our	little	toolkit	is
using	old-school	small	random	value	initialization.	It	seems	likely	that	we	have
an	increased	chance	of	starting	at	a	poor	location	in	the	loss	landscape	and	are
doomed	after	that	to	poor	performance.

What	if	the	tail	were	on	the	right?	What	might	that	indicate?	A	long	tail	on
the	right	would	mean	most	model	performance	is	mediocre	to	poor,	but,	on
occasion,	an	especially	“bright”	model	comes	along.	Such	a	scenario	would
mean	that	better	models	are	out	there,	but	that	our	training	and/or	initialization
strategy	isn’t	particularly	good	at	finding	them.	I	think	the	tail	on	the	left	is
preferable—most	models	find	reasonably	good	local	minima,	so	most	trainings,
unless	horrid,	end	up	in	pretty	much	the	same	place	in	terms	of	performance.



unless	horrid,	end	up	in	pretty	much	the	same	place	in	terms	of	performance.
Now,	let’s	examine	a	common	variant	of	momentum,	one	that	you’ll	no

doubt	run	across	during	your	sojourn	through	deep	learning.

Nesterov	Momentum
Many	deep	learning	toolkits	include	the	option	to	use	Nesterov	momentum
during	gradient	descent.	Nesterov	momentum	is	a	modification	of	gradient
descent	widely	used	in	the	optimization	community.	The	version	typically
implemented	in	deep	learning	updates	standard	momentum	from

to

where	we’re	using	gradient	notation	instead	of	partials	of	a	loss	function	to
indicate	that	the	technique	is	general	and	applies	to	any	function,	f(x).

The	difference	between	standard	momentum	and	deep	learning	Nesterov
momentum	is	subtle,	just	a	term	that’s	added	to	the	argument	of	the	gradient.
The	idea	is	to	use	the	existing	momentum	to	calculate	the	gradient,	not	at	the
current	position,	x,	but	the	position	gradient	descent	would	be	at	if	it	continued
further	using	the	current	momentum,	x	+	μ	v.	We	then	use	the	gradient’s	value	at
that	position	to	update	the	current	position,	as	before.

The	claim,	well	demonstrated	for	optimization	in	general,	is	that	this	tweak
leads	to	faster	convergence,	meaning	gradient	descent	will	find	the	minimum	in
fewer	steps.	However,	even	though	toolkits	implement	it,	there	is	reason	to
believe	the	noise	that	stochastic	gradient	descent	with	minibatches	introduces
offsets	the	adjustment	to	the	point	where	it’s	unlikely	Nesterov	momentum	is
any	more	useful	for	training	deep	learning	models	than	regular	momentum.	(For
more	on	this,	see	the	comment	on	page	292	of	Deep	Learning	by	Ian
Goodfellow	et	al.)

However,	the	2D	example	in	this	chapter	uses	the	actual	function	to	calculate
gradients,	so	we	might	expect	Nesterov	momentum	to	be	effective	in	that	case.



Let’s	update	the	2D	example,	minimizing	the	sum	of	two	inverted	Gaussians,
and	see	if	Nesterov	momentum	improves	convergence,	as	claimed.	The	code
we’ll	run	is	in	gd_nesterov.py	and	is	virtually	identical	to	the	code	in
gd_momentum.py.	Additionally,	I	tweaked	both	files	a	tiny	bit	to	return	the	final
position	after	gradient	descent	is	complete.	That	way,	we	can	see	how	close	we
are	to	the	known	minima.

Implementing	Equation	11.6	is	straightforward	and	affects	only	the	velocity
update,	causing

vx	=	mu*vx	-	eta	*	dx(x,y)
vy	=	mu*vy	-	eta	*	dy(x,y)

to	become

vx	=	mu	*	vx	-	eta	*	dx(x	+	mu	*	vx,y)
vy	=	mu	*	vy	-	eta	*	dy(x,y	+	mu	*	vy)

to	add	the	momentum	for	each	component,	x	and	y.	Everything	else	remains	the
same.

Figure	11-10	compares	standard	momentum	(top,	from	Figure	11-7)	and
Nesterov	momentum	(bottom).





Figure	11-10:	Standard	momentum	(top)	and	Nesterov	momentum	(bottom)

Visually,	Nesterov	momentum	shows	less	of	an	overshoot,	especially	for	the
spiral	marking	the	path	beginning	at	(1.5,	1.5).	What	about	the	final	location	that
each	approach	returns?	We	get	Table	11-2.

Table	11-2:	Final	Location	for	Gradient	Descent	With	and	Without	Nesterov	Momentum

Initial	point Standard Nesterov Minimum
(1.5,1.5) (–0.9496,

0.9809)
(–0.9718,
0.9813)

(–1,1)

(0.7,–0.2) (0.8807,	–
0.9063)

(0.9128,	–
0.9181)

(1,–1)

The	Nesterov	momentum	results	are	closer	to	the	known	minima	than	the
standard	momentum	results	after	the	same	number	of	gradient	descent	steps.

Adaptive	Gradient	Descent
The	gradient	descent	algorithm	is	almost	trivial,	which	invites	adaptation.	In	this
section,	we’ll	walk	through	the	math	behind	three	variants	of	gradient	descent
popular	with	the	deep	learning	community:	RMSprop,	Adagrad,	and	Adam.	Of
the	three,	Adam	is	the	most	popular	by	far,	but	the	others	are	well	worth
understanding,	as	they	build	in	succession	leading	up	to	Adam.	All	three	of	these
algorithms	adapt	the	learning	rate	on	the	fly	in	some	manner.

RMSprop
Geoffrey	Hinton	introduced	RMSprop,	which	stands	for	root	mean	square
propagation,	in	his	2012	Coursera	lecture	series.	Much	like	momentum	(with
which	it	can	be	combined),	RMSprop	is	gradient	descent	that	tracks	the	value	of
the	gradient	as	it	changes	and	uses	that	value	to	modify	the	step	taken.

RMSprop	uses	a	decay	term,	γ	(gamma),	to	calculate	a	running	average	of
the	gradients	as	the	algorithm	progresses.	In	his	lecture,	Hinton	uses	γ	=	0.9.

The	gradient	descent	update	becomes



First,	we	update	m,	the	running	average	of	the	squares	of	the	gradients,
weighted	by	γ,	the	decay	term.	Next	comes	the	velocity	term,	which	is	almost
the	same	as	in	vanilla	gradient	descent,	but	we	divide	the	learning	rate	by	the
running	average’s	square	root,	hence	the	RMS	part	of	RMSprop.	We	then
subtract	the	scaled	velocity	from	the	current	position	to	take	the	step.	We’re
writing	the	step	as	an	addition,	similar	to	the	momentum	equations	above
(Equations	11.5	and	11.6);	note	the	minus	sign	before	the	velocity	update.

RMSprop	works	with	momentum	as	well.	For	example,	extending	RMSprop
with	Nesterov	momentum	is	straightforward:

with	μ	the	momentum	factor,	as	before.
It’s	claimed	that	RMSprop	is	a	robust	classifier.	We’ll	see	below	how	it	fared

on	one	test.	We’re	considering	it	an	adaptive	technique	because	the	learning	rate
(η)	is	scaled	by	the	square	root	of	the	running	gradient	mean;	therefore,	the
effective	learning	rate	is	adjusted	based	on	the	history	of	the	descent—it	isn’t
fixed	once	and	for	all.

RMSprop	is	often	used	in	reinforcement	learning,	the	branch	of	machine
learning	that	attempts	to	learn	how	to	act.	For	example,	playing	Atari	video
games	uses	reinforcement	learning.	RMSprop	is	believed	to	be	robust	when	the
optimization	process	is	nonstationary,	meaning	the	statistics	change	in	time.
Conversely,	a	stationary	process	is	one	where	the	statistics	do	not	change	in
time.	Training	classifiers	using	supervised	learning	is	stationary,	as	the	training
set	is,	typically,	fixed	and	not	changing,	as	should	be	the	data	fed	to	the	classifier



over	time,	though	that	is	harder	to	enforce.	In	reinforcement	learning,	time	is	a
factor,	and	the	statistics	of	the	dataset	might	change	over	time;	therefore,
reinforcement	learning	might	involve	nonstationary	optimization.

Adagrad	and	Adadelta
Adagrad	appeared	in	2011	(see	“Adaptive	Subgradient	Methods	for	Online
Learning	and	Stochastic	Optimization”	by	John	Duchi	et	al.,	Journal	of	Machine
Learning	Research	12[7],	[2011]).	At	first	glance,	it	looks	quite	similar	to
RMSprop,	though	there	are	important	differences.

We	can	write	the	basic	update	rule	for	Adagrad	as

This	requires	some	explanation.
First,	notice	the	i	subscript	on	the	velocity	update,	both	on	the	velocity,	v,

and	the	gradient,	▽f	(x).	Here,	i	refers	to	a	component	of	the	velocity,	meaning
the	update	must	be	applied	per	component.	The	top	of	Equation	11.9	repeats	for
all	the	components	of	the	system.	For	a	deep	neural	network,	this	means	all	the
weights	and	biases.

Next,	look	at	the	sum	in	the	denominator	of	the	per-component	velocity
update.	Here,	τ	(tau)	is	a	counter	over	all	the	gradient	steps	taken	during	the
optimization	process,	meaning	for	each	component	of	the	system,	Adagrad
tracks	the	sum	of	the	square	of	the	gradient	calculated	at	each	step.	If	we’re
using	Equation	11.9	for	the	11th	gradient	descent	step,	then	the	sum	in	the
denominator	will	have	11	terms,	and	so	on.	As	before,	η	is	a	learning	rate,	which
here	is	global	to	all	components.

A	variant	of	Adagrad	is	also	in	widespread	use:	Adadelta.	(See	“Adadelta:
An	Adaptive	Learning	Rate	Method”	by	Matthew	Zeiler,	[2012].)	Adadelta
replaces	the	square	root	of	the	sum	over	all	steps	in	the	velocity	update	with	a
running	average	of	the	last	few	steps,	much	like	the	running	average	of
RMSprop.	Adadelta	also	replaces	the	manually	selected	global	learning	rate,	η,
with	a	running	average	of	the	previous	few	velocity	updates.	This	eliminates	the
selection	of	an	appropriate	η	but	introduces	a	new	parameter,	γ,	to	set	the



window’s	size,	as	was	done	for	RMSprop.	It’s	likely	that	γ	is	less	sensitive	to	the
properties	of	the	dataset	than	η	is.	Note	how	in	the	original	Adadelta	paper,	γ	is
written	as	ρ	(rho).

Adam
Kingma	and	Ba	published	Adam,	from	“adaptive	moment	estimation,”	in	2015,
and	it	has	been	cited	over	66,000	times	as	of	this	writing.	Adam	uses	the	square
of	the	gradient,	as	RMSprop	and	Adagrad	do,	but	also	tracks	a	momentum-like
term.	Let’s	present	the	update	equations	and	then	walk	through	them:

The	first	two	lines	of	Equation	11.10	define	m	and	v	as	running	averages	of
the	first	and	second	moments.	The	first	moment	is	the	mean;	the	second	moment
is	akin	to	the	variance,	which	is	the	second	moment	of	the	difference	between	a
data	point	and	the	mean.	Note	the	squaring	of	the	gradient	value	in	the	definition
of	v.	The	running	moments	are	weighted	by	two	scalar	parameters,	β1	and	β2.

The	next	two	lines	define	 	and	 .	These	are	bias	correction	terms	to	make
m	and	v	better	estimates	of	the	first	and	second	moments.	Here,	t,	an	integer
starting	at	zero,	is	the	timestep.

The	actual	step	updates	x	by	subtracting	the	bias-corrected	first	moment,	 ,
scaled	by	the	ratio	of	the	global	learning	rate,	η,	and	the	square	root	of	the	bias-
corrected	second	moment,	 .	The	∊	term	is	a	constant	to	avoid	division	by	zero.

Equation	11.10	has	four	parameters,	which	seems	excessive,	but	three	of



them	are	straightforward	to	set	and	are	seldom	changed.	The	original	paper
suggests	β1	=	0.9,	β2	=	0.999,	and	∊	=	10−8.	Therefore,	as	with	vanilla	gradient
descent,	the	user	is	left	to	select	η.	For	example,	Keras	defaults	to	η	=	0.001,
which	works	well	in	many	cases.

The	Kingma	and	Ba	paper	shows	via	experiment	that	Adam	generally
outperforms	SGD	with	Nesterov	momentum,	RMSprop,	Adagrad,	and	Adadelta.
This	is	likely	why	Adam	is	currently	the	go-to	optimizer	for	many	deep	learning
tasks.

Some	Thoughts	About	Optimizers
Which	optimization	algorithm	to	use	and	when	depends	on	the	dataset.	As
mentioned,	Adam	is	currently	favored	for	many	tasks,	though	properly	tuned
SGD	can	be	quite	effective	as	well,	and	some	swear	by	it.	While	it’s	not	possible
to	make	a	blanket	statement	about	which	is	the	best	algorithm,	for	there	is	no
such	thing,	we	can	conduct	a	little	experiment	and	discuss	the	results.

This	experiment,	for	which	I’ll	present	only	the	results,	trained	a	small
convolutional	neural	network	on	MNIST	using	16,384	random	samples	for	the
training	set,	a	minibatch	of	128,	and	12	epochs.	The	results	show	the	mean	and
standard	error	of	the	mean	for	five	runs	of	each	optimizer:	SGD,	RMSprop,
Adagrad,	and	Adam.	Of	interest	is	the	accuracy	of	the	test	set	and	the	training
clock	time.	I	trained	all	models	on	the	same	machine,	so	relative	timing	is	what
we	should	look	at.	No	GPU	was	used.

Figure	11-11	shows	the	overall	test	set	accuracy	(top)	and	the	training	time
(bottom)	by	optimizer.

On	average,	SGD	and	RMSprop	were	about	0.5	percent	less	accurate	than
the	other	optimizers,	with	RMSprop	varying	widely	but	never	matching	Adagrad
or	Adam.	Arguably,	Adam	performed	the	best	in	terms	of	accuracy.	For	training
time,	SGD	was	the	fastest	and	Adam	the	slowest,	as	we	might	expect,	given	the
multiple	per-step	calculations	Adam	performs	relative	to	the	simplicity	of	SGD.
Overall,	the	results	support	the	community’s	intuition	that	Adam	is	a	good
optimizer.





Figure	11-11:	MNIST	model	accuracy	(top)	and	training	time	(bottom)	by	optimizer

Summary
This	chapter	presented	gradient	descent,	working	through	the	basic	form,	vanilla
gradient	descent,	with	1D	and	2D	examples.	We	followed	by	introducing
stochastic	gradient	descent	and	justified	its	use	in	deep	learning.

We	discussed	momentum	next,	both	standard	and	Nesterov.	With	standard
momentum,	we	demonstrated	that	it	does	help	in	training	deep	models	(well,
relatively	“deep”).	We	showed	the	effect	of	Nesterov	momentum	visually	using
a	2D	example	and	discussed	why	Nesterov	momentum	and	stochastic	gradient
descent	might	counteract	each	other.

The	chapter	concluded	with	a	look	at	the	gradient	descent	update	equations
for	advanced	algorithms,	thereby	illustrating	how	vanilla	gradient	descent	invites
modification.	A	simple	experiment	gave	us	insight	into	how	the	algorithms
perform	and	appeared	to	justify	the	deep	learning	community’s	belief	in	Adam’s
general	suitability	over	SGD.

And,	with	this	chapter,	our	exploration	of	the	mathematics	of	deep	learning
draws	to	a	close.	All	that	remains	is	a	final	appendix	that	points	you	to	places
where	you	can	go	to	learn	more.

Epilogue
As	the	great	computer	scientist	Edsger	W.	Dijkstra	said,	“There	should	be	no
such	thing	as	boring	mathematics.”	I	sincerely	hope	you	didn’t	find	this	book
boring.	I’d	hate	to	offend	Dijkstra’s	ghost.	If	you’re	still	reading	at	this	point,	I
suspect	you	did	find	something	of	merit.	Good!	Thanks	for	sticking	with	it.	Math
should	never	be	boring.

We’ve	covered	the	basics	of	what	you	need	to	understand	and	work	with
deep	learning.	Don’t	stop	here,	however:	use	the	references	in	the	Appendix	and
continue	your	mathematical	explorations.	You	should	never	be	satisfied	with
your	knowledge	base—always	seek	to	broaden	it.

If	you	have	questions	or	comments,	please	do	reach	out	to	me	at
mathfordeeplearning@gmail.com.

mailto:mathfordeeplearning@gmail.com


GOING	FURTHER

The	goal	of	this	book	was	to	discuss	the	core	mathematics	behind	deep	learning,
the	sort	of	math	needed	to	follow	what	deep	learning	is	and	how	it	operates.
We’ve	done	just	that	in	the	previous	11	chapters.

In	this	appendix,	my	goal	is	to	point	you	toward	more.	Out	of	necessity,	we
only	waded	in	the	tide	pools,	which	are	fascinating	enough,	but	in	the	depths,
you’ll	find	still	more	beauty	and	elegance.	What	follows	are	pointers	to	help	you
get	more	out	of	the	topics	we	covered.

Probability	and	Statistics
There	are	hundreds,	if	not	thousands,	of	books	on	probability	and	statistics.	The
list	here	is,	naturally,	incomplete	and	not	comprehensive,	but	it	should	help	you
expand	your	knowledge	of	these	areas.

Probability	and	Statistics	by	Michael	Evans	and	Jeffrey	Rosenthal	A
comprehensive	textbook	approach	that’s	available	for	free	here:
http://www.utstat.toronto.edu/mikevans/jeffrosenthal/book.pdf.	Evans	and
Rosenthal’s	book	targets	readers	with	exactly	the	sort	of	background	that	this
book	covers.

Bayesian	Statistics	the	Fun	Way	by	Will	Kurt	We	discussed	Bayes’
theorem	in	Chapter	3.	This	book	presents	Bayesian	statistics	in	an
approachable	way.	Bayesian	statistics	is	strongly	related	to	machine	learning,
and	you’ll	eventually	encounter	it	as	you	progress	in	your	studies.

Introduction	to	Probability	by	Joseph	Blitzstein	and	Jessica	Hwang
Another	well-liked	introduction	to	probability,	which	includes	Monte	Carlo

http://www.utstat.toronto.edu/mikevans/jeffrosenthal/book.pdf


modeling.

Python	for	Probability,	Statistics,	and	Machine	Learning	by	José
Unpingco	This	book	provides	an	alternative	view	to	the	approach	I	took	in
this	book.	It	covers	slightly	different	topics,	but	still	using	Python	and
NumPy.	The	machine	learning	portion	covers	what	I	call	“classic	machine
learning”	with	some	mention	of	deep	learning.

Practical	Statistics	for	Medical	Research	by	Douglas	Altman	A	classic
text,	but	still	highly	readable	and	relevant,	though	it	comes	from	the	era
before	much	was	done	on	personal	computers.	The	focus	is	biostatistics,	but
the	basics	are	the	basics	regardless	of	the	application	area.

Linear	Algebra
Of	all	the	subjects	we	covered,	we	were	most	unfair	to	linear	algebra.	The
references	here	will	help	you	appreciate	the	full	elegance	of	the	subject.

Introduction	to	Linear	Algebra	by	Gilbert	Strang	A	popular	introductory
book.	It	covers	in	greater	detail	many	of	the	topics	I	touched	on	in	Chapters	5
and	6.

Linear	Algebra	by	David	Cherney	et	al.	Similar	to	the	above,	but	available
for	free:	https://www.math.ucdavis.edu/~linear/linear-guest.pdf.

Linear	Algebra	by	Jim	Hefferon	Also	available	for	free,	and	at	the	same
level	as	the	others:	http://joshua.smcvt.edu/linearalgebra/book.pdf.

Calculus
We	discussed	calculus	in	Chapters	7	and	8,	but	we	limited	ourselves	to
differentiation	only.	Calculus	is,	of	course,	much	more	than	differentiation.	The
other	primary	part	of	calculus	is	integration.	We	ignored	integration	because
deep	learning	seldom	uses	it.	Convolution	is	integration	when	working	with
continuous	variables,	but	most	integrals	become	summations	in	the	digital	world.
The	references	listed	here	will	fill	in	the	gaps	in	our	cursory	treatment.

Essential	Calculus	Skills	Practice	Workbook	by	Chris	McMullen	This
popular	textbook/workbook	covers	differentiation	and	beginning	integration.
It	includes	solutions	to	problems.	View	this	book	as	a	review	of	Chapter	7
and	an	introduction	to	integration.

https://www.math.ucdavis.edu/~linear/linear-guest.pdf
http://joshua.smcvt.edu/linearalgebra/book.pdf


Calculus	by	James	Stewart	If	McMullen’s	book	is	a	gentle	introduction,
this	book	is	a	comprehensive	treatment	of	the	topic.	The	book	covers
differentiation	and	integration,	including	multivariate	calculus,	that	is,	partial
derivatives	and	vector	calculus	(see	Chapter	8),	and	differential	equations.	It
includes	applications.

Matrix	Differential	Calculus	with	Applications	in	Statistics	and
Econometrics	by	Jan	Magnus	and	Heinz	Neudecker	Considered	by	some
to	be	the	standard	matrix	calculus	reference,	providing	an	in-depth	and
thorough	treatment	of	the	topic.

The	Matrix	Cookbook	by	Kaare	Brandt	Petersen	and	Michael	Syskind
Pedersen	A	popular	reference	for	matrix	calculus	that	goes	beyond	what	we
covered	in	Chapter	8.	You	can	find	it	here:
http://www2.imm.dtu.dk/pubdb/edoc/imm3274.pdf.

Deep	Learning
Deep	learning	is	evolving	rapidly.	While	some	of	the	early,	impressive	“Wow,	I
didn’t	know	that	was	even	possible”	results	are	becoming	less	common,	the	field
is	quietly	maturing	and	embedding	itself	in	almost	every	area	of	science	and
technology.	Our	world	will	never	be	the	same	because	of	what	deep	learning	has
made	possible.

Deep	Learning	by	Ian	Goodfellow,	Yoshua	Bengio,	and	Aaron	Courville
One	of	the	first	deep	learning–specific	textbooks	and	widely	regarded	as	one
of	the	best.	It	covers	all	the	essentials	but	goes	rather	quickly	at	times.

A	Matrix	Algebra	Approach	to	Artificial	Intelligence	by	Xian-Da	Zhang	A
new	book	covering	both	matrices	and	machine	learning,	including	deep
learning.	View	it	as	a	more	mathematical	treatment	of	machine	learning.

Deep	Learning	Specialization	on	Coursera	Not	a	text,	but	a	series	of
online	courses	with	top-tier	instructors.	You	can	find	the	courses	here:
https://www.coursera.org/specializations/deep-learning/.

Geoffrey	Hinton’s	Coursera	lectures	In	2012,	Hinton	gave	a	lecture	series
on	Coursera,	and	the	lectures	are	well	worth	listening	to	even	now.	RMSprop
was	discussed	in	this	series.	The	lectures	are	quite	accessible	and	not	overly
math-heavy.	You	can	find	them	here:
https://www.cs.toronto.edu/~hinton/coursera_lectures.html.

http://www2.imm.dtu.dk/pubdb/edoc/imm3274.pdf
https://www.coursera.org/specializations/deep-learning/
https://www.cs.toronto.edu/~hinton/coursera_lectures.html


Deep	Learning:	A	Visual	Approach	by	Andrew	Glassner	This	book	covers
the	breadth	of	deep	learning,	from	supervised	learning	to	reinforcement
learning—all	without	mathematics.	Use	it	as	a	rapid,	high-level	introduction
to	many	topics	in	the	field.

Reddit	To	keep	your	finger	on	the	pulse	of	the	deep	learning	community,
follow	the	conversation	on	Reddit:
https://www.reddit.com/r/MachineLearning/.

Arxiv	Found	at	https://arxiv.org/,	Arxiv	is	a	preprint	repository.	The	latest
deep	learning	papers	will	show	up	here.	Note,	as	the	field	progresses	so
rapidly,	publication	in	peer-reviewed	journals	is	not	the	norm.	Rather,
posting	papers	on	arxiv.org,	especially	those	presented	at	conferences,	is	the
way	to	see	the	latest	research.	Arxiv	is	separated	into	categories.	Those	I’ve
provided	here	are	the	ones	I	tend	to	follow,	though	there	are	others:

Computer	Vision	and	Pattern	Recognition:
https://arxiv.org/list/cs.CV/recent/

Artificial	Intelligence:	https://arxiv.org/list/cs.AI/recent/

Neural	and	Evolutionary	Computing:	https://arxiv.org/list/cs.NE/recent/

Machine	Learning:	https://arxiv.org/list/stat.ML/recent/

https://www.reddit.com/r/MachineLearning/
https://arxiv.org/
https://arxiv.org/list/cs.CV/recent/
https://arxiv.org/list/cs.AI/recent/
https://arxiv.org/list/cs.NE/recent/
https://arxiv.org/list/stat.ML/recent/
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B
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code,	249
derivatives,	247
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evidence,	59
likelihood,	59
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uninformed	prior,	62
updating	the	prior,	61

Bayes,	Thomas,	59
beta	distribution,	53
binomial	function,	47
birthday	paradox,	26
block	matrix,	125
box	plot,	80
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C
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derivative
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constant,	167
definition,	165,	166
directional,	188
exponential,	175
first,	167
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mixed	partial,	183
notation,	166
partial,	181
power	rule,	168
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rules	(table),	176
second,	167
trigonometric	functions,	172

differential,	163
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gradient,	186
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limit,	166
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matrix	calculus.	See	matrix	calculus	maxima,	177
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notation,	187
saddle	point,	178
scalar	field,	186
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central	limit	theorem,	55
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chain	rule	(derivatives),	170,	184
chain	rule	(probability),	37
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calculating,	97
interpreting,	97
critical	value,	97
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contour	plot,	276
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neural	network	(CNN),	234
cross-correlation,	232
filter,	235
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nonlinearity,	237
stride,	234
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correlation
Pearson,	86
Spearman,	90

covariance	matrix,	147
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right-hand	rule,	119

D
data
box	plot,	80
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CIFAR-10,	224
dataset	as	matrix,	222
Fashion-MNIST,	290
feature	space,	105
features,	105
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missing	data,	83
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ratio,	68
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notation,	166
partial,	181
power	rule,	168
product	rule,	169
quotient	rule,	169
rules	(table),	176
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determinant
properties,	134

deviation
mean,	74
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differential	equation
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critical	points,	207

distribution	(probability),	41
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beta,	53
binomial,	46
continuous,	51
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Gaussian,	53
lognormal,	83
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probability	density	function,	53
uniform,	45,	51

dot	product,	114

E
effect	size,	97
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event,	18
evidence	(Bayesian),	59

F
F1	score,	72
false	negative	(FN),	251
false	positive	(FP),	251
Fashion-MNIST,	290
Fast	Loaded	Dice	Roller	(FLDR),	49
feature	space,	105
features,	105
floating-point	numbers,	5
fully	connected	layer,	239

G
gamma	distribution,	53
Gaussian	distribution,	53



geometric	mean,	71
gradient
vector	field,	186

gradient	descent
Adadelta,	299
Adagrad,	297,	299
Adam,	297,	300
batch	training,	282
effect	of	multiple	minima,	281
in	1D,	272
in	2D,	276
minibatch,	283,	284
momentum,	285
neural	network,	289

Nesterov	momentum,	294
online	learning,	283
RMSprop,	297
stochastic,	282
vanilla,	272

H
Hadamard	product,	110
harmonic	mean,	72
Hessian	matrix,	211
as	Jacobian	of	gradient,	212
Cholesky	decomposition,	217
critical	points,	213
optimization,	214
quadratic	approximation,	215

Hinton,	Geoffrey,	297
histogram
converting	to	probabilities,	43
definition,	43

hypothesis	testing,	92



p-value,	95
alpha,	96
alternative	hypothesis,	94
assumptions,	95
calculate	CI,	97
confidence	interval	(CI),	96
interpreting,	97

critical	value,	97
degrees	of	freedom,	95
hypothesis,	94
interpretation,	94
Mann-Whitney	U,	93,	99
nonparametric,	93
null	hypothesis,	94
one-sided,	94
parametric,	93,	95
statistically	significant,	96
t-test,	93
assumptions,	95

two-sided,	94
warning,	96
Welch’s	t-test,	95
Wilcoxon	rank	sum	test,	99

I
identity	matrix,	132
indefinite	matrix,	140
inertia,	285
inner	product,	114
interquartile	range,	82
inverse	matrix,	138

J



joint	probability,	37
table,	33

K
k-nearest	neighbors,	105
Kronecker	product,	125
Kullback-Leiber	divergence,	151

L
L1-norm,	145
L2-norm,	145
law	of	large	numbers,	58
Let’s	Make	a	Deal,	46
likelihood	(Bayesian),	59
linear	algebra
definition,	103
Hadamard	product,	110
Kullback-Leibler	divergence,	151
matrix,	105
affine	transformation,	128
block,	125
characteristic	equation,	142
characteristic	polynomial,	142
cofactor,	136
cofactor	expansion,	136
conjugate	transpose,	140
covariance,	147
determinant,	134
determinant	properties,	134
direct	product,	125
eigenvalue,	141
eigenvector,	141



Hermitian,	140
Hermitian	adjoint,	140
identity,	132
indefinite,	140
inverse,	138
Kronecker	product,	125
minor,	135
Moore-Penrose	pseudoinverse,	160
multiplication,	120,	121
negative	definite,	140
negative	semidefinite,	140
nondegenerate,	138
nonsingular,	138
ones,	131
order,	106
orthogonal,	139
positive	definite,	140
positive	semidefinite,	140
rotation,	128
singular,	138
square,	123
symmetric,	139
trace,	130
transpose,	130
triangular,	133
zero,	131

principal	component	analysis	(PCA),	154
relative	entropy,	151
scalar,	104
singular	value	decomposition	(SVD),	157
tensor
arithmetic,	109
array	operations,	109
order,	106

vector
boxcar	distance,	146



centroid,	149
Chebyshev	distance,	146
city	block	distance,	146
column,	104
cross	product,	119
dot	product,	114
Euclidean	distance,	146
infinite	norm,	145
inner	product,	114
magnitude,	112
Mahalanobis	distance,	148
Manhattan	distance,	146
norm,	144
orthogonal,	115
outer	product,	117
projection,	116
right-hand	rule,	119
row,	104
Taxicab	distance,	146
transpose,	113
unit,	112

logistic	function,	229

M
Mahalanobis	distance,	148
Manhattan	distance,	146
Mann-Whitney	U,	99
null	hypothesis,	100

marginal	probability,	33
Matplotlib,	12
matrix,	105
affine	transformation,	128
block,	125
calculus.	See	matrix	calculus



characteristic	equation,	142
characteristic	polynomial,	142
cofactor,	136
cofactor	expansion,	136
conjugate	transpose,	140
covariance,	147
determinant
properties,	134

direct	product,	125
eigenvalue,	141
eigenvector,	141
Hermitian,	140
Hermitian	adjoint,	140
identity,	132
indefinite,	140
inverse,	138
Kronecker	product,	125
minor,	135
Moore-Penrose	pseudoinverse,	160
multiplication,	121
properties,	120

negative	definite,	140
negative	semidefinite,	140
nondegenerate,	138
nonsingular,	138
ones,	131
order,	106
orthogonal,	139
positive	definite,	140
positive	semidefinite,	140
rotation,	128
singular,	138
square,	123
symmetric,	139
trace,	130
transpose,	130



triangular,	133
zero,	131

matrix	calculus,	193
chain	rule
scalar	function	by	matrix,	203
scalar	function	by	vector,	200
vector	function	by	scalar,	202
vector	function	by	vector,	203

comparing	Jacobians,	gradients,	slopes,	205
denominator	layout,	194
derivative
activation	function,	219
element-wise	operations,	217

Hessian	matrix,	205,	211
as	Jacobian	of	gradient,	212

identities
scalar	function	by	matrix,	203
scalar	function	by	vector,	199
vector	function	by	scalar,	202
vector	function	by	vector,	203

Jacobian	matrix,	205
matrix	function	by	scalar,	198
numerator	layout,	194
scalar	function	by	matrix,	198
scalar	function	by	vector,	196
table	of	derivatives,	194
tangent	vector,	196,	198
vector	function	by	vector,	197
vector-valued	function,	195

matrix	direct	product,	125
matrix	multiplication,	121
properties,	120

mean
arithmetic,	70
geometric,	71



harmonic,	72
mean	deviation,	74
median,	72
median	absolute	deviation,	76
minibatch,	283,	284
missing	data,	83
momentum,	Nesterov,	294
Monty	Hall	dilemma,	19,	46
mutually	exclusive	events,	24

N
Naive	Bayes	classifier,	62
independence	assumption,	63

nearest	centroid	classifier,	149
negative	definite	matrix,	140
negative	semidefinite	matrix,	140
neural	network
bias	trick,	129
bias	vector,	225
convolution,	229
1D,	230

convolutional	layer,	234
filter,	235

dataset	shape,	225
embedding,	119
features,	105
features	space,	105
feedforward,	225
fully	connected	layer,	239
hyperparameter,	283
initialization,	42
logistic	function,	229
minibatch,	224,	264



momentum,	289
pooling	layer,	237
rectified	linear	unit	(ReLU),	226
sigmoid	function,	229
training,	259
weight	matrix,	225

neuroevolution,	217
Newton’s	method,	208
Hessian	matrix,	216
Jacobian,	209
Taylor	series	approximation,	215

normal	distribution,	53
not	a	number	(NaN),	83
NumPy,	4
array	indexing,	8
arrays	on	disk,	10
broadcasting,	110
colon,	9
data	types,	6
defining	arrays,	5
ellipsis,	9
matrix	multiplication,	123
special	arrays,	7

O
one-hot	encoding,	69
online	learning,	283
optimization
first-order,	214,	215
neuroevolution,	217
second-order,	214,	215
intractable,	217

orthogonal	matrix,	139
outer	product,	117



outliers,	82

P
p-value,	95
principal	component	analysis	(PCA),	154
pooling	layer
average,	238
information	loss,	238
maximum,	237

positive	definite	matrix,	140
positive	semidefinite	matrix,	140
posterior	probability,	59
precision,	72
principal	component	analysis	(PCA),	154
prior	probability,	60
updating,	61

probability
Bayes’	theorem,	21,	31
evidence,	59
likelihood,	59
posterior	probability,	59
prior	probability,	60
uninformed	prior,	62
updating	the	prior,	61

birthday	paradox,	26
central	limit	theorem,	55
chain	rule,	37
conditional,	31
definition,	18
distribution,	41
Bernoulli,	48
beta,	53,	83
binomial,	46
continuous,	51



discrete,	45
Fast	Loaded	Dice	Roller	(FLDR),	49
from	histogram,	44
gamma,	53
Gaussian,	53
lognormal,	83
normal,	53,	83
Poisson,	48
probability	density	function,	53
uniform,	45,	51

enumerating	the	sample	space,	23
event,	18
joint,	17,	33,	37
joint	probability	table,	33
law	of	large	numbers,	58
marginal,	17,	33
mutually	exclusive	events,	24
of	an	event,	22
product	rule,	25
product	rule	(conditional),	31
random	variable
continuous,	19
discrete,	19

sample,	18
sample	space,	18
sum	rule	(dependent	events),	25
sum	rule	(independent	events),	24
Titanic,	35
total,	32
two	dice,	23

probability	(distribution)
beta,	83

probability	density	function,	53
product	rule	(probability)
conditional	events,	31



independent	events,	25
PyTorch,	267

Q
quantiles,	78
quartiles,	78

R
random	variable
continuous,	19
discrete,	19

recall,	72
recursion,	135
reinforcement	learning,	298
relative	entropy,	151
RMSprop,	297
rotation	matrix,	128

S
saddle	point,	178
sample	(probability),	18
sample	space,	18
scalar,	104
scikit-learn,	14
SciPy,	11
sigmoid	function,	229
singular	matrix,	138
singular	value	decomposition,	157
square	matrix,	123
standard	error	(of	the	mean),	77



statistically	significant,	12,	96
statistics
correlation,	86
Pearson,	86
Spearman,	90

definition,	67
degrees	of	freedom,	95
deviation
biased	sample,	75
mean,	74
median	absolute,	76
standard	error,	77
unbiased	sample,	75

F1	score,	72
hypothesis	testing,	92
alpha,	96
alternative	hypothesis,	94
assumptions,	95
calculate	CI,	97
Cohen’s	d,	97
confidence	interval	(CI),	96
critical	value,	97
effect	size,	97
hypothesis,	94
interpretation,	94
Mann-Whitney	U,	93,	99
nonparametric,	93
null	hypothesis,	94
one-sided,	94
p-value,	95
parametric,	93,	95
statistically	significant,	96
t-test,	93,	95
t-test	assumptions,	95
two-sided,	94
warning,	96



Welch’s	t-test,	95
Wilcoxon	rank	sum	test,	99

interquartile	range,	82
Mann-Whitney	U,	292
mean
arithmetic,	70
geometric,	71
harmonic,	72

median,	70,	72
nonstationary,	298
one-hot	encoding,	69
precision,	72
quantiles,	78
quartiles,	78
recall,	72
standard	deviation,	70
standard	error,	70
stationary,	298
summary,	70
t-test,	292
types	of	data
interval,	68
nominal,	68
ordinal,	68
ratio,	68

variance,	70
biased	sample,	75
median	absolute,	76
standard	error,	77
unbiased	sample,	75

stochastic	gradient	descent,	282
sum	rule	(probability)
dependent	events,	25
independent	events,	24

Sumerian	cities,	32



summary	statistics,	70
swarm	optimization,	217
symmetric	matrix,	139

T
t-test
assumptions,	95
confidence	interval,	97
Welch’s,	95

Taylor	series,	214
tensor,	106
arithmetic
array	operations,	109

order,	106
TensorFlow,	267
toolkits,	2
total	probability,	32
trace,	130
training	a	network,	259
transcendental	function,	214
triangular	matrix,	133
true	negative	(TN),	254
true	positive	(TP),	254
2	×	2	tables,	254

U
uninformed	prior,	62

V
variance
biased	sample,	75



median	absolute,	76
standard	error,	77
unbiased	sample,	75

vector
boxcar	distance,	146
centroid,	149
Chebyshev	distance,	146
city	block	distance,	146
column,	104
cross	product,	119
dot	product,	114
Euclidean	distance,	146
infinite	norm,	145
inner	product,	114
matrix	notation,	123

L1-norm,	145
L2-norm,	145
magnitude,	112
Mahalanobis	distance,	148
Manhattan	distance,	146
norm,	144
orthogonal,	115
outer	product,	117
matrix	notation,	123

projection,	116
right-hand	rule,	119
row,	104
Taxicab	distance,	146
transpose,	113
unit,	112

W
Welch’s	t-test,	95
Wilcoxon	rank	sum	test,	99
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